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Experiment 1 LED_shifting 

  

1.1 Experiment Objective 
 

1. Practice to use development software Quartus II, including projects, system resources IP 

core; 

2. Proficiency in the writing of Verilog HDL, develop a fine writing style; 

3. Master the design of the frequency divider to realize the design of led shifting; 

4. Mange FPGA pin assignment according to the hardware resources; 

5. Observe the experiment result and summarize. 

 

1.2 Experiment Requirement  
 

1. Light all the LEDs when resetting; 

2. After resetting, all the LEDs blink from right to left (low to high); 

3. Each led is lit for 1 second; 

4. After the last left led blinks, the most right led continue to blink, to create a blink loop. 

 

1.3 Experiment  
 

1.3.1 Project building  

 

Take Quartus II 18.0 version as an example, the actual steps have been shown in figures. 
 

 
Fig 1.1 The main Quartus II display 

 

A. In Fig 1.1, you could start a new project by clicking the New Project Wizard at the software 
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center, or going to File > New Project Wizard, or the shortcut Ctrl + N. 

 

 
Fig 1.2 choose the directory 

B. In Fig 1.2, set the working directory to be example/led_run. The project must have a name, 

a related and easy name is suggested for future use and invoke. Choose led_run for the 

name. Since we have not yet created the directory, Quartus II software displays the pop-up 

box in Fig 1.3 asking if it should create the desired directory. Click Yes, which leads to the 

window in Fig 1.4. Choose Empty project and click Next. 

 

 
Fig 1.3 Quartus II can create a new directory for the project 

 

Fig 1.4 Select project type 
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Fig 1.5 Add files 

 

C. In Fig 1.5, you could add existing files (if any) to the project. Here, we click Next. 
 

 
Fig 1.6 Choose the device family and a specific device 

 

D. In Fig 1.6, choose Cyclone 10 LP for the family, Specific device selected in ‘Available 

devices’ list in target device and choose 10CL010YE144C8G chip in available devices. Click 

Next. 
 

 
Fig 1.7 EDA tools selection 

 

E. In Fig 1.7, some EDA tools are available. Here, we use default setting. Click Next and then 
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Finish to finish the project building. 

 
Fig 1.8 Select the new file type 

 

F. In Fig 1.8, choose File > New, Verilog HDL File and then click OK. To make the file name 

and project name consistent, click File > Save As, for the file name, use led_run, the type 

should be Verilog HDL Files. Remember to save it under the right directory. 

 

1.3.2 PCB Schematics 

 

 
 

Fig 1.9 PCB schematics for the LEDs 
 

 In Fig 1.9, all the LEDs share the same high anodes, so when an external low voltage is given 

in cathodes, LEDs are lit up. 

 

1.3.3 Experiment Procedure 

 

Step 1: Main Verilog HDL code block 

 module  LED_shifting (clk, rst, led); 
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  input clk, rst; 

  output [7:0]  led; 

 endmodule 

The input has clk and rst. clk is 50 MHz in this case. rst is to reset (We use PB1 on board as our 

reset key). 8 LEDs are defined as a vector 7 downto 0, to save the pin resources. Enter the main 

code to the led_run Verilog HDL file we just made. 

 

Step 2: Invocation for IP core, building and using PLL module 

1. In Fig 1. 10, find IP Catalog in the right side of the main interface. Click Library > Basic 

Functions > Clocks; PLLs and Resets > PLL > ALTPLL 

 
Fig 1. 10 IP Catalog 

2. Double click ALTPLL, and name PLL module. Here, we use PLL1, and make sure file type 

is Verilog, click OK. See Fig 1. 11. 

 
Fig 1.11 Name PLL module 

3. In Fig 1. 12, PLL setting interface had popped up. Inclk0 is the input clock of PLL, 

provided by the original board. It should be consistent with the system clock, to be 50 

MHz. Set In normal mode for the feedback path inside the PLL, and c0 is the output 

clock. Click Next. 
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Fig 1. 12 PLL setting 1 input clock 

4. In Fig 1. 13, optional inputs and lock output are for selecting. Here, we use the default 

setting.  

 
Fig 1. 13 PLL setting 2 

5. Click Next in the next 3 steps. PLL Reconfiguration default setting are used. 

6. In Fig 1. 14, Output Clocks are set. In total, 5 different clocks clk c0 – clk c4 are available. 

Here, only clk c0 is needed. Click Use this clock only for c0. Check the box Enter output 

clock frequency, set the frequency to be 100 MHz. Make sure the Clock phase shift is 0 

degree, and the Clock duty cycle is 50 (%).  
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Fig 1.14 PLL setting 3, output clock 

7. Use the default EDA setting. Click Next. 

8. In Fig 1.15, select the output file type *.bsf (will be used in the future when designing 

the graphic symbol design), remain the other to be the same. Click Finish. 

 
Fig 1. 15 Set the output file type 

9. In Fig 1.16, choose Files in the drop-down menu of Project Navigator (by default is 

Hierarchy). 
 

 
Fig 1.16 The location of PLL in Files 
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10. In Fig 1. 17, click PLL1.v, the main interface will display the code for PLL, find the module 

name and port list, copy them to the top level file (led_run.v), and instantiate it. 

 
Fig 1.17 Module and port list of PLL1 

11. Refer to the actual project files LED_shifting attached, adjust port allocation in top level 

file. Sys_rst is 1 before PLL, as the reset signal for the whole system. After the whole 

system gets locked (pll_locked == 1’b1), sys_rst is 0, and the register is driven by the 

rising edge of sys_clk, so it is the synchronous reset signal. 

 

Step 3: The design of the frequency divider (code can be found in the attached project files) 

 100 MHz clock output by the PLL is used for the system clock. The LED light blinking period is 

1 second after the frequency division. 

1. Microsecond frequency division 

First period of 100 MHz clock is 10 ns, 1 us needs 100 clock cycle. A register 

[7:0] us_reg is defined. 

2. Millisecond frequency division 

Since 1 ms = 1000 us, a [9:0] ms_reg is defined. 

3. Second frequency division 

Since 1 s = 1000 ms, a [9:0] s_reg is defined, and a second pulse signal s_f. Only 

after these three registers are counted full at the same time, it is 1 s, and a 

second pulse signal is sent. 

 

Step 4: Blinking led design 

 After pressing reset, all the LEDs are lit. The LED output is 8’hff, and then the LED will blink 

one by one from the right most (lowest). The LED output is 8’b0000_0001, after received the 

pulse signal, the LED output will become 8’b0000_0010. It seems like the high voltage logical 

shifts left. This could be implemented by bit splicing, that is, led <= {led [6:0], led [7]}. 

Step 5: Verification 

 
Fig 1. 18, Program simulation 

 

 In Fig 1.18, click the icon to compile the program, or use the shortcut Cltr + K. The third icon 

on the left is Pin Planner. The second one from the right is Programmer. A compilation report 

will be generated after finishing compilation, shown in Fig 1. 19. 
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Fig 1. 19 Compilation report 

 

 After debugging, you could download the program to the board. But before that, remember 

to do the pin assignment in the Pin Planner by other clicking the icon stated above or go to 

Assignments > Pin Planner. See Fig 1. 20. More available for reference in attached project files. 

 
Fig 1. 20 Pin assignment 

 

 After successfully downloading the program to the board, when you press PB 1, you should 

see all the LEDs are lit, after releasing, the LEDs are blinking one after the other from low to high. 
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Experiment 2 Switch and Use SignalTap II 

2.1 Experiment Objective 
 

1.  Continue to practice using the develop board 

2.  Use SignalTap II Logic Analyzer in Quartus II 

3.  Use FPGA configuration memory to program 

 

2.2 Experiment Requirement 
 

 By using SignalTap II, learn to analyze and capture the experimental signals. 

 

2.3 Experiment 
 

2.3.1 Project Building 

 

 Refer to Experiment1, the following experiment project building steps will be eliminated. 

 

2.3.2 PCB Schematics 

 
Fig 2. 1 Switch schematics 

2.3.3 Experiment Procedure 

 

We include the PLL1 generated in Experiment 1 

 Verilog HDL code is as follows: 

module SW_LED( 

    input                inclk, 

    input        [7:0]    sw, 

    output  reg  [7:0]    led 

); 

 

wire   sys_clk; 

wire   pll_locked; 

reg    sys_rst; 
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always@(posedge sys_clk) 

   sys_rst<=!pll_locked; 

  

always @(posedge inclk) 

if(sys_rst) 

led<=8'hff;      

else 

        led<=~sw;  

 

   

 PLL1 PLL1_INST 

( 

.areset (1'b0), 

.inclk0 (inclk), 

.c0 (sys_clk), 

.locked (pll_locked) 

 ); 

endmodule 

 

2.3.4 SignalTap II Logic Analyzer 

 

Step 1: SignalTap II startup and basic setup 

 Tools > Signal Tap Logic Analyzer， 

1. In Fig 2.2, enter the setup interface 

2. In JTAG Chain Configuration, click setup to set the same type as the downloader 

3. Set the scan chain type 

4. Set the SOF Manager, choose the *.sof file generated in Experiment 1 

 
Fig 2. 2 SignalTap II setup interface 

Double click 
here to add 
observation 
signals 
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5. Clock setting. See Fig 2. 3 

 
Fig 2.3 Clock, trigger and data depth setting 

6. In Fig 2. 4, in the popup window, choose SignalTap II: pre-synthesis for Filter, in 

Matching Nodes column, go to PLL1: PLL_INST, select c0, and click > to move it to the 

right frame. 
 

Fig 2. 4 Clock signal selection dialog boxes 

 Other settings are shown in Fig 2. 2. For furthermore reference, see the attached file for 

help. 

 

Step 2: Add the observation signals 

 
Fig 2. 5 Adding observation signal 

Click here to set the clock
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 In Fig 2. 2, double click any blank space to add the observation signals. The interface is 

shown in Fig 2. 5, choose the signal you want to observe on the left side, click > to add them to 

the right side, and then click Insert. Save it and recompile later. 

 

Step 3: Set the observation signals 

 For the observation signals, some settings are still needed, such as whether it is a Rising 

Edge trigger, a Falling Edge trigger, or Don’t Care, etc. They need to be adjusted manually. See Fig 

2. 6. 

 

 
Fig 2. 6 Setting for the trigger signal 

 

Step 4: Observe the result 

 In Fig 2. 7. Run the analysis and observe the SignalTap II output. 

 
Fig 2. 7 Testing result 

 After analysis, when the switch SW [4] is on, the signal is high, and the corresponding LED 

will be lighted. You could change the trigger type and observe different outputs. Analyze the 

result and organize it. 
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Experiment 3 BCD_counter 

 

3.1 Experiment Objective 
 

1. Review Experiment 1, the setting for PLL, design of frequency division, and the 

compilation of the code 

2. Study the BCD code counter 

3. Design of 7 segment decoder 

4. Download the program into the board flash memory 

 

3.2 Experiment Requirement  
 

1. The highest two segment decoders display hours, the middle two are for minutes, and 

the lowest two display the seconds. 

2. The decimal point will be off all the time. It will not be considered in this case. 

 

3.3 Experiment 
 

3.3.1 Build New Project 

 

See  Experiment 1 

 

3.3.2 PCB Schematics 

 

 
Fig 3. 1 PCB schematics for 7 segment decoders 

 

 In Fig 3. 1, six 7 segment decoders are used in this experiment. Some points need to be paid 

attention. 
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1. The segment names are shown above. A, B, C, D, E, F, and G correspond to the digital 

tube, while DP stands for the decimal point. D0, D1, D2, D3, D4, and D5 (on the 

rightest part) are for the current driver. 

2. They are common anode segment decoders, D0- D5 are set high or low to control the 

segment decoders. 

3. For the main segments, A- G are lit when the input is low, that is, ‘0’ is high. 

4. The segment decoder code is given as follows 

 

 always @  (*) 

  case(count_sel) 

   0:seven_seg_r<=7'b100_0000; 

   1:seven_seg_r<=7'b111_1001; 

   2:seven_seg_r<=7'b010_0100; 

   3:seven_seg_r<=7'b011_0000; 

   4:seven_seg_r<=7'b001_1001; 

   5:seven_seg_r<=7'b001_0010; 

   6:seven_seg_r<=7'b000_0011; 

   7:seven_seg_r<=7'b111_1000; 

   8:seven_seg_r<=7'b000_0000; 

   9:seven_seg_r<=7'b001_0000; 

   default:seven_seg_r<=7'b100_0000; 

  endcase 

 

 always @ (posedge sys_clk) 

  seven_seg<={1'b1,seven_seg_r}; 

5. Dynamic Scanning for human eyes. Since human eyes have visual persistence 

characteristics, the speed to illuminate the segment decoders is fast enough that it 

cannot be distinguished by naked eyes. Therefore, it can be viewed as consistent 

lighting instead of blinking. Like the running LED, one decoder is lit at one time, 

implemented in the form of low-level loop left shift. 

 

3.3.3 Experiment Procedure 

 

1. For the frequency division design, see Experiment 1. 

2. Dynamic scanning is implemented by the state machine. The relationship of conversion 

should be considered. 

3. The code implementation of one-to-one segment should be precise. 

4. Check the pin assignments before downloading the program to the board. Pin 

assignment file can be referred in the reference file. 

 

3.3.4 Configuration Serial Flash Programming 
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Fig 3. 2 Flash schematics 

 In Fig 3. 2, the functionality of Flash is to save the uploaded program even after the power is 

turned off. If the power is on next time, the program can be running on the board immediately. It 

is a very useful characteristic. The specific configuration process is as follows: 

1. File > Convert Programming Files, as shown in Fig 3. 3 

2. Option setting: 

a. In Programming file type, choose JTAG Indirect Configuration File(.jic) 

b. For Configuration device, choose EPCQ 128A (compatible development board 

N25Q128A) 

c. In Mode, choose Active Serial 

 

 

 
Fig 3. 3 Set .jic file 

3. Click Advanced and set as in Fig 3. 4 
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Fig 3. 4 Set the advanced option 

4. Click SDF Data, and then Add File, find *.sof file in the output_files. See Fig 3. 5 

 
Fig 3. 5 Add a conversion file 

5. Add device. See Fig 3. 6 

6. Click Generate, and BCD_counter.jic file will be generated. 

 
Fig 3. 6 Add device 

7. Follow the same downloading procedure in previous experiments. Observe the segment 

decoder on develop board. 

 

 

 

 



23 

 

Experiment 4 Block/ Schematic Test 

 

4.1 Experiment Objective 
 

1. Review the new project building, PLL setting, Verilog HDL’s tree hierarchy design, use of 

SignalTap 

2. Use graphics method top-down design 

3. Combine the BCD_counter design to realize the display of the digital clock 

4. Observe the experiment result 

 

4.2 Experiment 
 

1. Build new project named block_counter 

 
Fig 4. 1 New file selection 

2. In Fig 4. 1, choose Block Diagram/Schematic File this time instead of Verilog HDL file. 

3. In Fig 4. 2, the middle blank part is for designing block diagram or schematics. 

a. Save the file as block_counter.bdf. 

b. Double click the bank space to add the symbol. 

 
Fig 4. 2 Block diagram/ schematic design interface 

4. In Library, find c:/, and the primitives, or just simply type the symbol name in the search 
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box. 

 
Fig 4. 3 Input symbols 

5. Add input and output and modify their names. See Fig 4. 3 

6. Add a customized symbol 

a. Add a new Block Diagram/Schematic File. Save the file as PLL_sys.bdf 

b. Create a new PLL I referring to Experiment 1. 

c. Select the new generated file to include PLL1.bsf file. 

d. Double click blank space in PLL_sys.bdf, and choose under Project, add PLL1. See 

Fig 4. 4 

e. Continue to add other symbols, such as input, output, dff, GND etc. Remember to 

modify their names. You could choose the Orthogonal node tool icon to wire 

them. See Fig 4. 5 

 
Fig 4. 4 Invoke the customized symbol 

Click it and change 

the pin name 
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Fig 4. 5 Symbol wiring 

7. Create the symbol for the new file 

a. File > Create/ Update > Create Symbol Files for Current File. See Fig 4. 6 

b. Save as PLL_sys.bsf 

 
Fig 4. 6 Create symbol files for current file 

8. Create a new Verilog HDL file for the frequency division (see reference project files) 

a. Create a new frequency divider Verilog HDL file named div_us 

b. Set PLL output clock as its own input clock. Divide the clock of 100 MHz into a clock 

of 1 MHz. 

c. Repeat step 7, create div_us.bsf 

d. Create a new Verilog HDL file with a frequency of 1000: div_1000f.v. 

e. Create a div_1000f.bsf symbol 

9. Create a graph of us, ms, and second output pulse files for testing. See Fig 4. 7 

a. Create a new Block Diagram/Schematic File, and add this generated symbol to 

block_div.bdf. 

b. Repeat step 7 and create symbol file for block_div.bdf as well. 
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Fig 4. 7 us, ms, second pulse  

10. Create a new Verilog HDL file named bcd_counter.v. Design time, minute counter and 

create bsf symbol. Refer Experiment 3 and implement some of the division using 

block_div. 

11. Combine each *.bsf and complete the design of the digital clock (block_counter.bdf). For 

the output, use Orthogonal Bus Tool to wire. See Fig 4. 8 

 
Fig 4. 8 BDF designed digital clock 

12. Assign pins, and program it. For the board downloading, you can refer to Experiment 3. 
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Experiment 5 Block_debouncing 

 

5.1 Experiment Objective 
 

1. Review the design process of running LED 

2. Learn the principle of button debounce and designing of adaptive programming 

3. Learn the connection and used of the Fii-PRA010 button  

4. Integrated application of button debounce, and furthermore development design 

 

5.2 Experiment  
 

1. Bouncing button principle 

 
Fig 5. 1 Button bounce principle 

 Usually, the switches used for the buttons are mechanical elastic switches. When the 

mechanical contacts are opened and closed, due to the elastic action of the mechanical contacts, 

a push button switch does not immediately turn on when closed, nor is it off when disconnected. 

Instead, there is some bouncing when connecting and disconnecting. See Fig 5. 1 

 The length of the button's stable closing time is determined by the operator. It usually takes 

more than 100ms. If you press it quickly, it will reach 40-50ms. It is difficult to make it even 

shorter. The bouncing time is determined by the mechanical characteristics of the button. It is 

usually between a few milliseconds and tens of milliseconds. To ensure that the program 

responds to the button’s every on and off, it must be debounced. When the change of the button 

state is detected, it should not be immediately responding to the action, but waiting for the 

closure or the disconnection to be stabilized before processing. Button debounce can be divided 

into hardware debounce and software debounce. 

In most of cases, we use software or programs to achieve debounce. The simplest debounce 

principle is to wait for a delay time of about 10ms after detecting the change of the button state, 

and then perform the button state detection again after the bounce disappears. If the state is the 

same as the previous state just detected, the button can be confirmed. The action has been 

stabilized. This type of detection is widely used in traditional software design. However, as the 

number of button usage increases, or the buttons of different qualities will react differently. If the 

delay is too short, the bounce cannot be filtered out. When the delay is too long, it affects the 

sensitivity of the button. 
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This chapter introduces an adaptive button debounce method: starts timing when a change 

in the state of the button is detected. If the state changes within 10ms, the button bouncing 

exists. It returns to the initial state, clears the delay counter, and re-detects the button state until 

the delay counter counts to 10ms. The same debounce method is used for pressing and releasing 

the button. The flow chart is shown in Fig 5. 2. 

2. Code for button debouncing 

Verilog code is as follows： 

module pb_ve( 

    input   sys_clk,  // 100Mhz 

    input   sys_rst,  // 

    input   ms_f,    // 

    input   keyin,   // Input status of the key 

    output  keyout  //Output status of key. Every time releasing the button, only one system  

   //clock pulse outputs 

); 

 

 reg keyin_r;  //Input latch to eliminate metastable 

 reg keyout_r;// 

    //push_button vibrating elemination 

      reg   [1:0]   ve_key_st;       //State machine status bit 

      reg   [3:0]   ve_key_count;    //delay counter 

 

   always@(posedge sys_clk) 

   keyin_r<=keyin;      // Input latch to eliminate metastable 

 

always@(posedge sys_clk) 

      if(sys_rst) begin 

        keyout_r       <=1'b0; 

        ve_key_count   <=0; 

        ve_key_st      <=0; 

      end 

      else case(ve_key_st) 

0:begin 

         keyout_r<=1'b0; 

         ve_key_count   <=0; 

         if(keyin_r) 

         ve_key_st      <=1; 

       end 

1:begin 

         if(!keyin_r) 

         ve_key_st      <=0; 

         else begin 

              if(ve_key_count==10) begin 
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                ve_key_st      <=2; 

               end 

              else if(ms_f) 

                ve_key_count<=ve_key_count+1;               

         end     

        end   

 2:begin 

            ve_key_count   <=0; 

            if(!keyin_r) 

            ve_key_st      <=3; 

          end   

 3:begin 

               if(keyin_r) 

               ve_key_st      <=2; 

               else begin 

                    if(ve_key_count==10) begin 

                      ve_key_st      <=0; 

                      keyout_r<=1'b1;  //After releasing debounce, output a 

//synchronized clock pulse  

                     end 

                    else if(ms_f) 

                      ve_key_count<=ve_key_count+1; 

               end     

         end       

default:; 

      endcase   

  assign keyout=keyout_r;     

endmodule 

 Case 0 and 1 debounce the button press state. Case 2 and 3 debounce the button release 

state. After finishing the whole debounce procedure, the program outputs a synchronized clock 

pulse. 

3. Button debounce flow chart 
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Fig 5. 2 Button debounce flow chart 

4. Combine running LED design and modify the button debounce. 

a. Build new project 

b. Create a PLL symbol 

c. Create a button debounce symbol (See the Verilog HDL code in this experiment) 

d. Create a running LED symbol 

//Verilog code 

module Led_shifting( 

     input            rst, 

  input     sys_clk, 

  input     key_left, 

  input     key_right, 

  input     s_f, 

    output reg [7:0]  led 

    ); 

     

  reg   ext_rst; 

    

   always@(posedge sys_clk) begin 

    ext_rst<=rst; 

    end   

 always@(posedge sys_clk) 

 if(ext_rst)begin 

 led<=8'hff; 

 end 

 else begin 

    if(key_left) begin 

Start 

End 



31 

 

   if(led==8'hff) 

    led<=8'b0000_0001; 

   else  

    led<={led[6:0],led[7]}; 

  end 

  else if(key_right) begin 

   if(led==8'hff) 

    led<=8'b1000_0000; 

   else  

    led<={led[0],led[7:1]};   

  end  

 end    

endmodule 

e. Create top level file and combine each symbol referring to Experiment 4. See Fig 5. 

3 

f. Pin assignment 

Signal Name Port Description Network Label FPGA Pin 

left Left shift signal KEY0 3 

right Right shift signal KEY1 7 

rst Reset signal KEY2 10 

Table 5. 1 Pin assignment 

One more thing to mention is that in the I/O Standard column, select 3.3-V 

LVCMOS instead of 2.5 V 

g. Compile 

h. Download the program to the board 

i. Observe the testing result, to see whether every time pressing a button, LED will 

move towards the corresponding direction. PB3 is reset, PB1 is to move to the left, 

and PB2 is to move to the right. (block_debouncing Quartus II project files can be 

referred). 
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Fig 5. 3 Top level design 

5. Button PCB schematics. See Fig 5. 4 

 
Fig 5. 4 PCB schematics 
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Experiment 6 Use Multiplier and ModelSim 

 

6.1 Experiment Objective 
 

1. Learn to use multiplier 

2. Use ModelSim to output 

 

6.2 Experiment Requirement 
 

1. 8×8 multiplier. The first input is 8-bit switch, and the second input is the output of an 8-

bit counter. 

2. Observe the output in ModelSim. 

3. Observe the calculation result on 4 segment decoders. 

 

6.3 Experiment 
 

1. Build a new project mult_sim 

Different from what we did before, we use EDA simulation. The actual setting is shown in 

Fig 6. 1 

 
Fig 6. 1 Set EDA tool 

2. Design procedure 

a. Create a new file named mult_sim.v 

b. Add PLL, set the clock input frequency is 50 MHz, and the output is 100 MHz 

c. In the right of the main interface, find Installed IP > Library > Basic Functions > 
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Arithmetic > LPM_MULT IP. An interface will pop up. See Fig 6. 2 

d. Select the Multiplication Type to be unsigned. See Fig 6. 3 

 
Fig 6. 2 LPM_MULT interface 

 
Fig 6. 3 Multiplication type selection 

e. In Pipelining, select Yes, and set the output latency to be 1 clock cycle. Pipeline will 

speed up the execution speed. See Fig 6. 4 

f. Make other settings default. 

g. Instantiate it in the top level file. 
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Fig 6. 4 Pipelining setting 

3. The top level file is as follows 

module mult_sim ( 

 input    inclk, 

 input    rst, 

 input  [7:0] sw, 

 output  [6:0] seven_seg, 

 output  [3:0] scan, 

 output  [15:0] mult_res, 

 output reg [7:0] count 

); 

 

 wire   sys_clk; 

 wire   sys_rst; 

  

 always @ (posedge sys_clk) 

  if(sys_rst) 

   count <= 0; 

  else 

   count <= count + 1; 

  

 pll_sys_rst pll_sys_rst_inst( 

   .inclk  (inclk), 

   .sys_clk (sys_clk), 

   .sys_rst (sys_rst) 

  ); 
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 mult_8x8 mult_8x8_inst ( 

   .clock (sys_clk), 

   .dataa (sw), 

   .datab (count), 

   .result (mult_res) 

  ); 

endmodule 

4. ModelSim simulation 

a. Simulation based on waveform inputs 

b. Tool > Option. In the popup window, under General, find EDA Tool Options. In 

ModelSim-Altera, find the correct path. See Fig 6. 5 

 
Fig 6. 5 Set the correct path for ModelSim-Altera 

c. Tool > Run Simulation Tool > RTL Simulation. See Fig 6. 6 

 
Fig 6. 6 Simulation interface 
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d. Set ModelSim 

i. Simulate > Start Simulation 

ii. In the popup window, add libraries under Libraries tag. See Fig 6. 7 

iii. Under Design tag, choose simulation project mult_sim and click OK. See Fig 

6. 8 

 
Fig 6. 7 Add simulation libraries 

 
Fig 6. 8 Choose the project in simulation 

 

iv. In the Objects window, choose all the signals and drag them to Wave window. 

See Fig 6. 9 
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Fig 6. 9 Add observation signals 

v. Set the signals in Wave, right click any signal and a selection window will occur. 

See Fig 6. 10 

 
Fig 6. 10 Set the signals 

vi. For logical signals select Force and select Clock for clock signals 

1) Set rst signal. See Fig 6. 11 
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Fig 6. 11 Set rst signal 

2) Set Inclk signal. See Fig 6. 12 

 
Fig 6. 12 Set inclk signal 

3) Set sw signal. See Fig 6. 13 

 
Fig 6. 13 Set sw signal 

 

vii. Run simulation. In the tool bar, set the simulation time to be 100 ns. Click 

the Run icon to run. See Fig 6. 14 

 
Fig 6. 14 Set the simulation time 

viii. Observe the simulation result. See Fig 6. 15 
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Fig 6. 15 Simulation result 

 

ix. Result analysis 

1) Counter count does not have a valid result, instead, unknow result 

XXXXXX is gotten. 

2) sys_rst does not reset signals. It changes from X to 0 

3) Add pll_locked signal to the wave, and re-simulate 

 
Fig 6. 16 Re-simulation result 

4) In Fig 6. 16, before PLL starts to lock, the sys_clk already has a rising 

edge, so PLL_locked signal is just converted from low to high. There is 

no reliable reset is formed. 

5) Solution 

     Method 1: Define sys_rst to be 1’b0； 

      module pll_sys_rst( 

       input    inclk, 

       output   sys_clk, 

       output   reg  sys_rst =1'b1 

      ); 

      Method 2: Use external rst signal to procide reset 

      Here, method 1 is adopted 
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Fig 6. 17 Recompile the simulation 

x. Recompile the simulation. See Fig 6. 17 

xi. Since waveform editing efficiency is relatively low, the use of simulation 

testbench file is encouraged. Name a new Verilog HDL file tb_mult.v. 

`timescale 10ns/1ns 

 

module tb_mult;  //Define the simulation signal 

 

 reg        rst; 

 reg    clk; 

 reg  [7:0] sw; 

 wire [7:0] count; 

 wire [7:0] seven_seg; 

 wire [3:0] scan; 

 wire [15:0] mult_res; 

  

 mult_sim S1(     // S1 is the instance of simulation module 

  .rst  (rst), 

  .inclk  (clk), 

  .sw   (sw), 

  .seven_seg (seven_seg), 

  .scan  (scan), 

  .count  (count), 

  .mult_res (mult_res) 

 ); 

 

 always #5 clk = ~clk; 

 

 initial       //Initialize the simulation signals 

 begin 

  rst = 0; 

  clk = 1; 

  #5 sw = 20; 

  #10 sw = 50; 

  #10 sw = 100; 
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  #10 sw = 101; 

  #10 sw = 102; 

  #10 sw = 103; 

  #10 sw = 104; 

  #50 sw = 105; 

  $monitor("%d * %d=%d", count, sw, mult_res); 

  #1000 $stop; 

 end 

endmodule 

xii. Compile and simulate 

1) Only choose Start Analysis & Elaboration, do not choose either 

compilation or synthesis one. See Fig 6. 18 

 
Fig 6. 18 TB file analyzing 

2) Set the testbench file: Assignments > Settings. See Fig 6. 19 

 
Fig 6. 19 Simulation setting 1 

Go to Simulation, For Tool name, select ModelSim-Altera. In Compile 

test bench, click Test Benches to add tb simulation file. See Fig 6. 20 
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Fig 6. 20 Simulation setting 2 

Click New, input the Test bench name. Make the name be consistent 

with tb file. See Fig 6. 21. 

 

Fig 6. 21 Simulation setting 3 

Click the red ellipse to add the test bench file. Find tb_mult.v file 

written before. Click Add to add. Click OK (three times) to finish the 

setting. See Fig 6. 22 
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Fig 6. 22 Simulation setting 4 

3) Repeat previous step, to start ModelSim to simulate. See Fig 6. 23 

 
Fig 6. 23 Waveform output 

4) After a certain delay, outputs will display in Transcript. See Fig 6. 24 

 
Fig 6. 24 Text displays operation result 
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Experiment 7 Hexadecimal Numbers to BCD Code Conversion and 

Application 

 

7.1 Experiment Objective 
 

1. Convert binary numbers to BCD 

2. Convert hexadecimal numbers to BCD 

 

7.2 Experiment Principle 
 

1. Since the hexadecimal display is not intuitive, decimal display is more widely used in 

real life. 

2. Human eyes recognition is relatively slow, so the display from hexadecimal to decimal 

does not need to be too fast. Generally, there are two methods 

a. Countdown method: 

Under the control of the synchronous clock, the hexadecimal number is 

decremented by 1 until it is reduced to 0. At the same time, the appropriate 

BCD code decimal counter is designed to increment. When the hexadecimal 

number is reduced to 0, the BCD counter just gets with the same value to 

display. 

b. Bitwise operations (specifically, shift bits and plus 3 here). The implementation is 

as follows: 

i. Set the maximum decimal value of the expression. Suppose you want to 

convert the 16-digit binary value (4-digit hexadecimal) to decimal. The 

maximum value can be expressed as 65535. First define five four-digit binary 

units: ten thousand, thousand, hundred, ten, and one to accommodate 

calculation results 

ii. Shift the hexadecimal number by one to the left, and put the removed part 

into the defined variable, and judge whether the units of ten thousand, 

thousand, hundred, ten, and one are greater than or equal to 5, and if so, 

add the corresponding bit to 3 until the 16-bit shift is completed, and the 

corresponding result is obtained. 

Note: Do not add 3 when moving to the last digit, put the operation result 

directly 

iii. The principle of hexadecimal number to BCD number conversion 

Suppose ABCD is a 4-digit binary number (possibly ones, 10 or 100 bits, 

etc.), adjusts it to BCD code. Since the entire calculation is implemented in 

successive shifts, ABCDE is obtained after shifting one bit (E is from low 

displacement and its value is either 0 or 1). At this time, it should be 

judged whether the value is greater than or equal to 10. If so, the value is 

increased by 6 to adjust it to within 10, and the carry is shifted to the 
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upper 4-bit BCD code. Here, the pre-movement adjustment is used to first 

determine whether ABCD is greater than or equal to 5 (half of 10), and if it 

is greater than 5, add 3 (half of 6) and then shift. 

For example, ABCD = 0110 (decimal 6) 

1) After shifting it becomes 1100 (12), greater than 1001 (decimal 9) 

2) By plus 0110 (decimal 6), ABCD = 0010, carry position is 1, the result 

is expressed as decimal 12 

3) Use pre-shift processing, ABCD = 0110 (6), greater than 5, plus 3 

4) ABCD = 1001 (9), shift left by one 

5) ABCD = 0010, the shifted shift is the lowest bit of the high four-bit 

BCD. 

6) Since the shifted bit is 1, ABCD = 0010(2), the result is also 12 in 

decimal. 

7) The two results are the same 

8) Firstly, make a judgement, and then add 3 and shift. If there are 

multiple BCD codes at the same time, then multiple BCD numbers all 

must first determine whether need to add 2 and then shift. 

3. The first way is relatively easy. Here, the second method is mainly introduced. 

Example 1: Binary to BCD 

 
Fig 7. 1 Binary to decimal 

 Example 2: Hexadecimal to BCD 
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Fig 7. 2 Hexadecimal to decimal 

4. Write a Verilog HDL to convert 16-bit binary to BCD. (You can find reference in the project 

folder, HEX_BCD.v. 

5. ModelSim simulation 

a. Refer to Experiment 6 to set the simulation 

b. Th simulation result is shown in Fig 7. 3 

 
Fig 7. 3 Simulation for binary to decimal 

6. Remark 

The assignment marks for the examples above are “=” instead of “<=”. Why? 

Since the whole program is designed to be combinational logic, when invoking the 

modules, the other modules should be synchronized the timing. 

 

7.3 Application of Hexadecimal Number to BCD Number Conversion 
 

1. Continue to complete the multiplier of Experiment 6 and display the result in digital form 

in decimal. Refer to the attached project file HEX_BCD_mult.v. 

2. Compilation. Observe the Timing Analyzer in Compilation Report. 

a. Slow 1200mV 85C Model > Fmax Summary is 83. 71 MHz. See Fig 7. 4 
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Fig 7. 4 Fmax Summary 

b. Setup Summary 

 
Fig 7. 5 Setup summary  

c. Timing Closure Recommendation. See Fig 7. 6 

 
Fig 7. 6 Timing Analysis 

d. From the above three indicators, the above programming does not meet the timing 

requirements. It can also be seen that the maximum delay path is the delay of the 

output of the multiplier to HEX_BCD. 

There are 3 solutions: 
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i. Reduce the clock frequency 

ii. Increase the timing of HEX_BCD and increase the pipeline 

iii. Insert pipeline isolation at the periphery (can reduce some delay) 

The way to increase the pipeline, will be introduced in the follow-up 

experiment, because the function of HEX_BCD is mainly used to display the 

human-machine interface, the speed requirement is low, and the frequency 

reduction method is adopted here. 

3. Modify PLL to increase an output of 20 MHz frequency. 

module pll_sys_rst( 

 

 input   inclk, 

 output   sys_clk, 

 output   BCD_clk, 

 output reg  sys_rst =1'b1 

); 

 

 wire pll_locked; 

  

 always@(posedge sys_clk) 

  sys_rst <= !pll_locked; 

 

 PLL PLL_inst ( 

  .areset (1'b0), 

  .inclk0 (inclk), 

  .c0  (sys_clk), 

  .c1  (BCD_clk),  //20Mhz 

  .locked (pll_locked) 

 ); 

endmodule 

4. New code added. Refer to the project files. 

reg [15:0] mult_res_r; 

 

always @ (posedge BCD_clk) 

  mult_res_r<=mult_res; 

5. Recompile and observe the timing result. 

6. Lock the pins and download the program to FII-PRA010 board. Test it. 

 

7.4 Experiment Summary and Reflection 
 

1. How to implement BCD using more than 16bits binary numbers 

2. What is a synchronous clock and how to handle an asynchronous clock 

3. Learn to design circuits meeting the requirement 
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Experiment 8 Use of ROM (Read-only Memory) 

 

8.1 Experiment Objective 
 

1. Study the internal memory block of FPGA 

2. Study the format of *.mif and how to edit *.mif file to configure the contents of ROM 

3. Learn to use RAM, read and write RAM  

 

8.2 Experiment Requirement 
 

1. Design 16 outputs ROM, address ranging 0-255 

2. Interface 8-bit switch input as ROM’s address 

3. Segment decoders display the contents of ROM and require conversion of hexadecimal 

to BCD output. 

 

8.3 Experiment 
 

8.3.1 Design Procedure 

 

1. Build a new project named memory_rom 

2. In Installed IP, choose Library > Basic Function > On Chip Memory > ROM: 1-PORT, file 

type to be Verilog HDL. Choose 16 bits and 256 words for output. See Fig 8. 1 

 
Fig 8. 1 RAM IP core invoking 

3. According to the default setting, you need to add an initial ROM file in the location 

where red oval circles. See Fig 8. 2. In the figure, a *.mif file has already been added. 

(Refer to the project files) 

4. Create a top level entity rom.mif 

a. Go to File > New > Memory Files > Memory Initialization File. See Fig 8. 3 
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Fig 8. 2 ROM setting 

 
Fig 8. 3 New *.mif file 

b. In Fig 8. 4, modify the Number of words and Word size. 

c. In Fig 8. 5. In the address area, right click and you can input the data or change the 

display format, such as hexadecimal, octal, binary, unsigned, signed, etc. 
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Fig 8. 4 *.mif file setting 1 

 
Fig 8. 5 *.mif file setting 2 

d. After completing the ROM and IP’s setting, fill the data for rom.mif. For 

convenience of verification, store the same data as the address from the lower 

byte to higher byte in ascending form. Right click to select Custom Fill Cells. See Fig 

8. 6. The starting address is 0, ending at 255 (previous address setting depth is 

256). The initial value is 0 and the step is 1. 

e. After the setup, the system will fill in the data automatically. See Fig 8. 7 

 
Fig 8. 6 Fill date for rom.mif  
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Fig 8. 7 Part of data after auto filling 

5. Refer to the design of conversion from hexadecimal to BCD in Experiment 7, display the 

data in ROM to the segment decoders. (You can refer to the project files attached) 

 

8.3.2 Board Verification 

 

Compile, lock the pins, and verify the experiment downloading the program to the develop 

board. 

Reflection: 

1. How to use the initial file of ROM to realize the decoding, such as decoding and 

scanning the segment decoders. 

2. Write a *.mif file to generate sine, cosine wave, and other function generators. 

3. Comprehend application, combine the characteristic of ROM and PWM to form SPWM 

modulation waveform. 
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Experiment 9 Use Dual-port RAM to Read and Write Frame Data 

 

9.1 Experiment Objective 
 

1. Learn to configure and use dual-port RAM 

2. Learn to use synchronous clock to control the synchronization of frame structure 

3. Learn to use asynchronous clock to control the synchronization of frame structure 

4. Observing the synchronization structure of synchronous clock frames using SignalTap II 

5. Extended the use of dual-port RAM 

6. Design the use of three-stage state machine 

 

9.2 Experiment Requirement 
 

1. Generate dual-port RAM and PLL 

a. 16-bit width, 256-depth dual-port RAM 

b. 2 PLL, both 50 MHz input, different 100 MHz and 20 MHz outputs  

2. Design a 16-bit data frame 

a. Data is generated by an 8-bit counter: Data={~counta,counta} 

b. The ID of the data frame inputted by the switch (7 bits express maximum of 128 

different data frames) 

c. 16-bit checksum provides data verification 

i. 16-bit checksum accumulates, discarding the carry bit 

ii. After the checksum is complemented, append to the frame data 

4. Provide configurable data length data_len by parameter 

5. Packet: When the data and checksum package are written to the dual-port RAM, the 

userID, the frame length and the valid flag are written to the specific location of the 

dual-port RAM. The structure of the memory is shown in Table 9. 1 

Wr_addr Date/ Flag Rd_addr 

8’hff {valid, ID, data_len} 8’hff 

... N/A ... 

8’hnn+2 N/A 8’hnn+2 

8’hnn+1 ~checksum+1 8’hnn+1 

8’hnn datann 8’hnn 

... .... ... 

8’h01 Data1 8’h01 

8’h00 Data0 8’h00 
 

Table 9. 1 Memory structure 

6. Read and write in an agreed order 

Firstly, write in the order 

i. Read the flag of the 8'hff address (control word). If valid=1'b0, the 
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program proceeds to the next step, otherwise waits 

ii. Address plus 1, 8’hff+1 is exactly zero, write data from 0 address and 

calculate the checksum 

iii. Determine whether the interpretation reaches the predetermined data 

length. If so, proceeds to next step, otherwise the data is written, and the 

checksum is calculated. 

iv. checksum complements and write to memory 

v. Write the control word in the address 8'hff, packet it 

Secondly, read in the order 

i. Idle is the state after reset 

ii. Init: Initialization, set the address to 8’hff 

iii. Rd_pipe0: Add a latency (since the read address and data are both 

latched). Address +1, forming a pipeline structure 

iv. Read0: Set the address to 8’hff, read the control word and judge whether 

the valid bit is valid. 

If valid=1’b1, address +1, proceeds to the next step 

If valid=1’b0, it means the packet is not ready yet, the address is set to be 

8’hff and returns to the init state. 

v. Read1: Read the control word again 

If valid=1’b1, address+1, ID and data length are assigned to the 

corresponding variables and proceeds to the next step 

If valid=1’b0, it means the packet is not ready yet, the address is set to 

8’hff, and returns to the init state. 

vi. Rd_data: 

Read data and pass to data variables 

Calculate checksum, data_len - 1 

Determine whether the data_len is 0, if so, all data has been read, 

proceeds to the next step, otherwise, continue the operation in current 

state 

vii. grd_chsum: Read the value of checksum and calculate the last checksum. 

Correct the data and set the flag of rd_err 

viii. rd_done: The last step clears the valid flag in memory and opens the write 

enable for the next packet. 

Thirdly, valid is the handshake signal. This flag provides the possibility of read and 

write synchronization, so the accuracy of this signal must be ensured in the program 

design. See the project files for more details. 

 

9.3 Experiment 
 

1. Port 

module frame_ram 

#(parameter data_len=250) 

( 
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input     inclk, 

input     rst,       //external reset  

input   [6:0] sw,       //used as input ID 

output reg[6:0] oID,      //used as output ID 

output reg    rd_done,  //frame read is done 

output reg  rd_err  //frame read has errors 

 ); 

2. Definition of state machine 

 parameter [2:0] mema_idle=0, 

     mema_init=1, 

     mema_pipe0=2, 

     mema_read0=3, 

     mema_read1=4, 

      mema_wr_data=5, 

      mema_wr_chsum=6, 

      mema_wr_done=7; 

 

 parameter [2:0]  memb_idle=0, 

      memb_init=1, 

      memb_pipe0=2, 

      memb_read0=3, 

      memb_read1=4, 

      memb_rd_data=5, 

      memb_rd_chsum=6, 

      memb_rd_done=7; 

3. Define clock parameter 

wire    sys_clk; 

wire    BCD_clk; 

wire    sys_rst; 

 reg    ext_clk; 

4. Define two-port RAM interface 

reg [7:0]  addr_a; 

reg [15:0] data_a; 

reg   wren_a; 

wire [15:0] q_a; 

 

reg [7:0]  addr_b; 

reg   wren_b; 

wire [15:0] q_b; 

5. Write state machine partial variable definition 

a. Write state machine variables 

reg[6:0]    user_id; 

  reg[7:0]   wr_len; 
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  reg[15:0]   wr_chsum; 

  wire      wr_done; 

 

  reg[7:0]    counta; 

  wire[7:0]   countb=~counta; 

  

  reg        ext_rst; 

  reg [2:0]    sta; 

  reg[2:0]    sta_nxt; 

b. Read state machine variables 

reg[15:0]   rd_chsum； 

  reg[7:0]    rd_len; 

  reg[15:0]   rd_data; 

 

  reg       ext_rst; 

    reg[2:0]    stb; 

reg[2:0]    stb_nxt; 

6. Data generation counter 

 always@(posedge BCD_clk) 

 ext_rst<=rst; 

 

 always@(posedge sys_clk) 

 if(sys_rst) begin 

 counta   <=0; 

 user_id  <=0; 

 end 

 else begin 

 counta <=counta+1; 

 user_id<=sw; 

     end 

7. Write state machine  

a. First and second stages 

  assign wr_done=(wr_len==data_len-1); //Think why to use wr_len==data_len-1 

           //instead of wr_len==data_len 

always@(posedge sys_clk) 

if(sys_rst) begin 

 sta=mema_idle; 

end 

else  

   sta=sta_nxt; 

  

always@(*) 
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case (sta) 

mema_idle  : sta_nxt=mema_init; 

 

mema_init  : sta_nxt=mema_pipe0; 

 

mema_pipe0 : sta_nxt=mema_read0; 

 

mema_read0 :begin 

 if(!q_a[15]) 

 sta_nxt=mema_read1; 

 else 

 sta_nxt=sta; 

end 

mema_read1:begin 

 if(!q_a[15]) 

 sta_nxt=mema_wr_data; 

 else 

 sta_nxt=sta; 

end 

mema_wr_data: begin 

 if(wr_done) 

 sta_nxt=mema_wr_chsum; 

 else 

 sta_nxt=sta; 

end 

mema_wr_chsum:  sta_nxt=mema_wr_done; 

mema_wr_done: sta_nxt=mema_init; 

default:sta_nxt=mema_idle; 

  endcase 

b. Third stage 

always@(posedge sys_clk) 

case (sta) 

mema_idle: begin 

addr_a<=8'hff; 

wren_a<=1'b0; 

data_a<=16'b0; 

wr_len<=8'b0; 

wr_chsum<=0; 

end 

mema_init,mema_pipe0,mema_read0,mema_read1: begin 

addr_a<=8'hff; 

wren_a<=1'b0; 

data_a<=16'b0; 
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wr_len<=8'b0; 

wr_chsum<=0; 

end 

mema_wr_data:begin 

addr_a<=addr_a+1; 

wren_a<=1'b1; 

data_a<={countb,counta}; 

wr_len<=wr_len+1; 

 

wr_chsum<=wr_chsum+{countb,counta}; 

end 

 

mema_wr_chsum:begin 

addr_a<=addr_a+1; 

wr_len<=wr_len+1; 

wren_a<=1'b1; 

data_a<=(~wr_chsum)+1'b1; 

end 

 

mema_wr_done:begin 

addr_a<=8'hff; 

wren_a<=1'b1; 

data_a<={1'b1,user_id,wr_len}; 

end 

default:; 

  endcase 

8. Read state machine 

a. First stage 

always@(posedge sys_clk) 

if(ext_rst) begin 

 stb=memb_idle; 

end 

else  

     stb=stb_nxt; 

b. Second stage 

always @ (*) 

case (stb) 

memb_idle  : stb_nxt=memb_init; 

 

memb_init  : stb_nxt=memb_pipe0; 

 

memb_pipe0 : stb_nxt=memb_read0; 
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memb_read0 :begin 

 if(q_b[15]) 

 stb_nxt=memb_read1; 

 else 

 stb_nxt=memb_init; 

end 

memb_read1:begin 

 if(q_b[15]) 

 stb_nxt=memb_rd_data; 

 else 

 stb_nxt=memb_init; 

end 

memb_rd_data: begin 

 if(rd_done) 

 stb_nxt=memb_rd_chsum; 

 else 

 stb_nxt=stb; 

end 

memb_rd_chsum:  stb_nxt=memb_rd_done; 

memb_rd_done: stb_nxt=memb_init; 

default:stb_nxt=memb_idle; 

  endcase 

c. Third stage. The actual operation is driven by the edge of the clock 

always@(posedge sys_clk) 

case(stb) 

memb_idle: begin 

addr_b<=8'hff; 

rd_data<=0; 

rd_chsum<=0; 

wren_b<=1'b0; 

rd_len<=8'b0; 

oID<=7'b0; 

rd_err<=1'b0; 

end 

 

memb_init: begin 

addr_b<=8'hff; 

rd_data<=0; 

rd_chsum<=0; 

wren_b<=1'b0; 

rd_len<=8'b0; 

oID<=7'b0; 

rd_err<=1'b0; 
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endmemb_pipe0: begin 

addr_b<=8'b0; 

end 

 

memb_read0: begin 

if(q_b[15]) 

addr_b<=addr_b+1'b1; 

else 

addr_b<=8'hff; 

 

rd_data<=0; 

rd_chsum<=0; 

wren_b<=1'b0; 

rd_len<=8'b0; 

oID<=7'b0; 

end 

memb_read1: begin 

if(q_b[15]) 

addr_b<=addr_b+1'b1; 

else 

addr_b<=8'hff; 

 

rd_data<=0; 

rd_chsum<=0; 

wren_b<=1'b0; 

rd_len<=q_b[7:0]; 

oID<=q_b[14:8]; 

end 

 

memb_rd_data: begin 

addr_b<=addr_b+1'b1; 

rd_data<=q_b; 

rd_chsum<=rd_chsum+rd_data; 

wren_b<=1'b0; 

rd_len<=rd_len-1'b1; 

end 

 

memb_rd_chsum: begin 

 addr_b<=8'hff; 

 wren_b<=1'b0; 

 

 if(|rd_chsum)//Determine if rd_chsum is not 0, error occurs when reading data 

 rd_err<=1'b1; 
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end 

 

memb_rd_done: begin 

addr_b<=8'hff; 

wren_b<=1'b1; 

end 

default:; 

endcase 

 

always@(*)begin 

if(stb==memb_rd_data) 

rd_done=(rd_len==0); 

else 

rd_done=1'b0; 

  end 

9. Instantiate dual-port RAM and PLL 

 //Instantiate dual-port RAM 

dp_ram dp_ram_inst 

( 

.address_a(addr_a), 

.address_b(addr_b), 

.clock  (sys_clk), 

.data_a  (data_a), 

.data_b  (16'b0), 

.wren_a (wren_a), 

.wren_b(wren_b), 

.q_a (q_a), 

.q_b (q_b) 

 ); 

 

 //Instantiate PLL 

pll_sys_rst pll_sys_rst_inst 

( 

.inclk (inclk), 

.sys_clk (sys_clk), 

.BCD_clk(BCD_clk), 

.sys_rst (sys_rst) 

 ); 

 endmodule 

 

9.4 Lock the Pins, Compile, and Download to FII-PRA006 FPGA to Test 

Signal Name Port Description Network Label FPGA Pin 
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Inclk Input clock C10_50MCLK 91 

rst Reset signal KEY2 10 

sw[6] Switch input 6 SW6_LED6 76 

sw[5] Switch input 5 SW5_LED5 75 

sw[4] Switch input 4 SW4_LED4 74 

sw[3] Switch input 3 SW3_LED3 87 

sw[2] Switch input 2 SW2_LED2 86 

sw[1] Switch input 1 SW1_LED1 83 

sw[0] Switch input 0 SW0_LED0 80 

 

 

9.5 Use SignalTap II to Observe the Dual-port RAM Read and Write 
 

1. In order to facilitate the observation of the read and write state machine synergy 

results, the data length is changed to 4 here, recompile and download. Users can test 

themselves using long data. 

module frame_ram 

#(parameter data_len=4) 

( 

input inclk, 

input rst,       //external reset  

input [6:0]sw,       //used as input ID 

output reg[6:0] oID,      //used as output ID 

output reg  rd_done,  //frame read is done 

output reg   rd_err //frame read has errors 

 )； 

2. SignalTap II simulation result. See Fig 9. 1 
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Fig 9. 1 SingalTap II simulation 

3. Observe the simulation result 

a. Observe the handshake mechanism through dual-port RAM 

Determine whether the reading is started after the packet is written, whether the 

write packet is blocked before reading the entire packet is completed. 

b. Observe the external interface signal and status 

Rd_done, rd_err 

Set rd_err = 1, or the rising edge is the trigger signal to observe whether the error 

signal is captured. 

Observe whether wren_a, wren_b signal and the state machine jump are strictly 

matched to meet the design requirements. 

 

9.6 Experiment Summary and Reflection 
 

1. Review the design requirements. How to analyze an actual demand, gradually establish 

a model of digital control and state machine and finally design. 

2. Modify the third stage of the state machine into the if...else model and implement. 

3. Focus on thinking If the read and write clocks are different, it becomes an 

asynchronous mechanism, how to control the handshake. 

4. According to the above example, consider how dual-port RAM can be used in data 

acquisition, asynchronous communication, embedded CPU interface, and DSP chip 

interface. 

5. How to build ITCM with dual-port RAM and DTCM preparing for future CPU design. 
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Experiment 10 Asynchronous Serial Port Design and Experiment 

 

10.1 Experiment Objective 
 

1. Because asynchronous serial ports are very common in industrial control, communication, 

and software debugging, they are also vital in FPGA development. 

2. Learning the basic principles of asynchronous serial port communication, handshake 

mechanism, data frame 

3. Master asynchronous sampling techniques 

4. Review the frame structure of the data packet 

5. Learning FIFO  

6. Joint debugging with common debugging software of PC (SSCOM, teraterm, etc.) 

 

10.2 Experiment Requirement 
 

1. Design and transmit full-duplex asynchronous communication interface Tx, Rx 

2. Baud rate of 11520 bps, 8-bit data, 1 start bit, 1 or 2 stop bits 

3. Receive buffer (Rx FIFO), transmit buffer (Tx FIFO) 

4. Forming a data packet 

5. Packet parsing 

 

10.3 Experiment 
 

1. Build new project named uart_frame, select 10Cl010YF144C8G for device. 

2. Add new file named uart_top, add a PLL (can be copied from the previous experiment) 

module uart_top 

( 

input    inclk, 

input rst, 

Input    baud_sel, 

input rx, 

output intx 

); 

 

wire  sys_clk; 

wire  uart_clk; 

wire   sys_rst; 

wire  uart_rst; 

 

pll_sys_rst pll_sys_rst_inst 

( 
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.inclk (inclk), 

.sys_clk (sys_clk), 

.uart_clk (uart_clk), 

.sys_rst (sys_rst), 

.uart_rst(uart_rst) 

); 

 

endmodule 

3. New baud rate generator file 

a. Input clock 7.3728MHz (64 times 115200). The actual value is 7.377049MHz, which 

is because the coefficient of the PLL is an integer division, while the error caused by 

that is not large, and can be adjusted by the stop bit in asynchronous 

communication. See Fig 10. 1. 

Fine solution 

i. Implemented with a two-stage PLL for a finer frequency 

ii. The stop bit is set to be 2 bits, which can effectively eliminate the error. 

This experiment will not deal with the precision. The default input frequency is 

7.3728 MHz. 

 
Fig 10. 1 PLL setting 

b. Supported baud rates are 115200，57600，38400，19200  

c. The default baud rate is 115200 

 

4. Design of baud rate (Refer to the project files UART_FRAME) 

a. Instantiate and set it as top level 

wire        tx_band; 

Wire     tx_band; 
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baud_rate 

#(.div(64)) 

 baud_rate_inst 

( 

.rst   (uart_rst), 

.inclk  (uart_clk), 

.baud_sel  (baud_sel), 

.baud_tx  (baud_tx), 

); 

b. Baud rate design source file  

module baud_rate 

#(parameter div=64) 

( 

input           rst, 

input           inclk, 

input     [1:0] baud_sel, 

output reg     baud_tx, 

output reg      baud_rx 

); 

 

wire [8:0] frq_div_tx;  //Send baud rate, clock frequency division selection 

assign frq_div_tx=(baud_sel==2'b0)?9'd63: 

         (baud_sel==2'b01)?9'd127: 

         (baud_sel==2'b10)?9'd255:9'd511; 

 

reg [8:0] count_tx=9'd0; 

 

always@(posedge inclk) 

if(rst) begin 

  count_tx  <=9'd0; 

  baud_tx <=1'b0; 

end 

else begin 

if(count_tx==frq_div_tx) begin 

  count_tx <=9'd0; 

  baud_tx<=1'b1; 

end 

else begin 

count_tx<=count_tx+1'b1; 

baud_tx<=1'b0; 

end 

end 
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wire [6:0] frq_div_rx;       //Accept partial baud rate design  

assign frq_div_rx=(baud_sel==2'b0)?7'd7: 

         (baud_sel==2'b01)?7'd15: 

         (baud_sel==2'b10)?7'd31:7'd63; 

   

reg [8:0] count_rx=9'd0; 

 

always@(posedge inclk) 

if(rst) begin 

  count_rx  <=9'd0; 

  baud_rx <=1'b0; 

end 

else begin 

if(count_rx==frq_div_rx) begin 

  count_rx <=9'd0; 

  baud_rx<=1'b1; 

 end 

else begin 

count_rx<=count_rx+1'b1; 

baud_rx<=1'b0; 

end 

end 

 

endmodule 

5. Design the buffer file tx_buf 

a. 8-bit FIFO, depth is 256, read/write clock separation, full flag, read empty flag 

b. Interface and handshake 

i. rst reset signal 

ii. wr_clk write clock 

iii. tx_clk send clock 

iv. 8-bit write data tx_data 

v. wr_en write enable 

vi. ctrl writes whether the data is a data or a control word 

vii. rdy buffer ready, can accept the next data frame 

c. Send buffer instantiation file 

tx_buf  

#(.TX_BIT_LEN(8),.STOP_BIT(2)) 

tx_buf_inst 

( 

.sys_rst   (sys_rst), 

.uart_rst  (uart_rst), 

.wr_clk   (sys_clk), 

.tx_clk   (uart_clk), 
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.tx_baud   (tx_baud), 

.tx_wren   (tx_wren), 

.tx_ctrl    (tx_ctrl), 

.tx_datain (tx_data), 

.tx_done    (tx_done), 

.txbuf_rdy (txbuf_rdy), 

.tx_out    (tx_out) 

   ); 

d. Send buffer source file (Refer to the project file) 

6. Serial transmission, interface and handshake file design 

a. Interface design 

i. tx_rdy, send vacancy, can accept new 8-bit data 

ii. tx_en, send data enable, pass to the sending module 8-bit data enable signal 

iii. tx_data, 8-bit data to be sent 

iv. tx_clk, send clock 

v. tx_baud, send baud rate 

 

 

b. Instantiation 

tx_transmit  

#(.DATA_LEN(TX_BIT_LEN), 

.STOP_BIT(STOP_BIT) 

) 

tx_transmit_inst 

( 

.tx_rst (uart_rst), 

.tx_clk (tx_clk), 

.tx_baud (tx_baud), 

.tx_en (tx_en), 

.tx_data (tx_data), 

.tx_rdy (trans_rdy), 

.tx_out (tx_out)   

   ); 

c. Source file (Refer to the project files) 

7. Send file testbench.v (Refer to the project file tb_uart) 

8. Send ModelSim simulation. See Fig 10. 2 (Already saved as wave.do file) 
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Fig 10. 2 ModelSim simulation waves sent by serial 

9. Extended design (extended content is only reserved for users to think and practice,) 

a. Design the transmitter to support 5, 6, 7, 8-bit PHY (Port physical layer) 

b. Support parity check 

10. The settings of the above steps involve FIFO, PLL, etc. (Refer to uart_top project file) 

UART accept file design 

a. Design of rx_phy.v 

Design strategies and steps 

i. Use 8 times sampling: so rx_baud is different from tx_baud, here sampling 

is rx_band = 8*tx_band 

ii. Adopting multiple judgments to realize the judgment of receiving data. 

Determine whether the data counter is greater than 4 after the sampling 

value is counted. 

iii. Steps to receive data: 

1) Synchronization: refers to how to find the start bit from the received 

0101... sync_dtc 

2) Receive start bit (start) 

3) Cyclically receive 8-bit data 

4) Receive stop bit (determine whether it is one stop bit or two stop 

bits) 

Determine if the stop bit is correct 

Correct, jump to step ii 

Error, jump to step i, resynchronize 

Do not judge, jump directly ii, this design adopts the scheme of no 

judgment 

b. rx_phy source file (Refer to the project file) 

c. The design of rx_buf 

Design strategy and steps 

i. Add 256 depth, 8-bit fifo 
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1) Read and write clock separation 

2) Asynchronous clear (internal synchronization) 

3) Data appears before the rdreq in the read port 

ii. Steps: 

1) Initialization: fifo, rx_phy 

2) Wait: FIFO full signal (wrfull) is 0 

3) Write: Triggered by rx_phy: rx_phy_byte, rx_phy_rdy 

4) End of writing 

5) Back to ii and continue to wait 

rx_buf.v source program (Reference to project files) 

Receive simulation incentive 

Content and steps 

i. tx, rx loopback test (assign rx_in = tx_out) 

ii. Continue to use the incentive file in the TX section 

iii. Writing the incentive part of rx 

Modelsim simulation, as shown in Fig 10. 3 

 
 Fig 10. 3 ry_phy waveform  

Reflection and expansion 

i. Modify the program to complete the 5, 6, 7, 8-bit design 

ii. Completing the design of the resynchronization when the start and stop 

have errors of the receiving end rx_phy 

iii. Complete the analysis and packaging of the receipt frame of rx_buf 

iv. Using multi-sampling to design 180° alignment of data, compare with FPGA 

resources, timing and data recovery effects 

 

Hardware test 

 

 

 

 

 

Fig 10. 4 USB to serial conversion 

USB 

J2 
USB to UART 

TXD 

RXD 
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Firstly, Use FII-PR006 to test 

Secondly, FPGA and UART pin mapping table. See Table 10. 1 

 

UART RXD TXD 

Schematic Name JTAG_TXD_O JTAG_RXD_I 

FPGA Pin 144 143 

Table 10. 1 FPGA and UART pin mapping table 

Thirdly, lock the pins, and recompile 

Fourthly, write a hardware test file 

a. Development board J2 is connected to the host USB interface 

b. Using test software such as teraterm, SSCOM3, etc. You can also write a serial 

communication program (C#, C++, JAVA, Python...). 

c. PC sends data in a certain format 

d. The test end uses a counter to generate data in a certain format. 

e. The test procedure is as follows (hw_tb_uart) 

module hw_tb_uart( 

    input inclk, 

 input rst, 

 input rx_in, 

 output tx_out 

 ); 

 

wire [1:0]  baud_sel=2'b00; //Default baud rate is 115200 

 

reg         tx_wren=0; 

reg         tx_ctrl=0; 

reg   [7:0] tx_data=0; 

reg   [7:0]  tx_len=0; 

reg         tx_done; 

wire        txbuf_rdy; 

 

wire        sys_clk; 

wire        sys_rst; 

 

reg  [7:0] count=0; 

 

reg  [3:0] trans_st; 

always@(posedge sys_clk) 

if(sys_rst)begin 

    trans_st    <=0; 

    tx_wren     <=1'b0; 

    tx_ctrl     <=1'b0; 

    tx_data     <=8'b0; 
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    tx_done     <=1'b0; 

    tx_len      <=0; 

    tx_len      <=0; 

    count       <=8'd0; 

end 

else case(trans_st) 

0:begin 

    trans_st    <=1; 

    tx_wren     <=1'b0; 

    tx_ctrl     <=1'b0; 

    tx_data     <=8'b0; 

    tx_done     <=1'b0; 

    tx_len      <=16; 

    end 

1:begin 

    tx_wren     <=1'b0; 

    tx_ctrl     <=1'b0; 

    tx_data     <=8'b0; 

    tx_done     <=1'b0; 

    if(txbuf_rdy) 

    trans_st    <=2; 

    end 

 2:begin 

   tx_wren     <=1'b1; 

   tx_ctrl     <=1'b1; 

   tx_data     <=tx_len; 

   trans_st    <=3; 

    end 

 3:begin 

   tx_wren     <=1'b0; 

   tx_ctrl     <=1'b0; 

   if(tx_len==0) 

       trans_st    <=4; 

   else if(txbuf_rdy) begin 

        tx_data     <=count; 

        count       <=count+1; 

        tx_wren     <=1'b1; 

        tx_len      <=tx_len-1; 

   end 

   end 

4:begin 

    tx_wren     <=1'b0; 

    tx_ctrl     <=1'b0; 
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    tx_data     <=0; 

    tx_len      <=16; 

    tx_done     <=1'b1; 

    trans_st    <=5; 

   end 

5:begin 

       tx_done     <=1'b0; 

       trans_st    <=1; 

      end  

endcase 

 

wire    [7:0] rx_byte; 

wire          rx_byte_rdy; 

 

reg [7:0]   rx_byte_r; 

reg         rx_rden;  

 

always@(posedge sys_clk) 

 if(rx_byte_rdy)begin 

        rx_rden <=1'b1;  

        rx_byte_r<=rx_byte; 

    end 

else begin 

rx_rden<=1'b0; 

end 

     

 uart_top uart_top_dut 

(     

.inclk      (inclk), 

.rst        (rst), 

.baud_sel   (baud_sel), 

.tx_wren    (tx_wren), 

.tx_ctrl    (tx_ctrl), 

.tx_data    (tx_data), 

.tx_done    (tx_done), 

.txbuf_rdy  (txbuf_rdy), 

.rx_rden    (rx_rden), 

.rx_byte    (rx_byte), 

.rx_byte_rdy(rx_byte_rdy), 

.sys_clk    (sys_clk), 

.sys_rst    (sys_rst), 

.rx_in      (rx_in), 

.tx_out     (tx_out) 
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); 

    

endmodule 

Set this file to be top level entity and instantiate the previous program. Download the 

program to the board and verify it. 

 

Fifthly, lock the pins and test.  

Signal Name Port Description Network Label FPGA Pin 

Inclk Clock input C10_50MCLK 91 

rst Reset signal KEY2 10 

rx_in Serial input data TAG_RXD_I 144 

tx_out Serial output data TAG_TXD_O 143 

 

Observe the data received by PC. See Fig 10. 5 

Use SignalTap II to observe the data received by FPGA. 

 
Fig 10. 5 Data sent displayed on the host computer 

Sixthly, the receiving part has been eliminated here. You are encouraged to try it on 

your own. 
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Experiment 11 IIC Protocol Transmission 

 

11.1 Experiment Objective 
 

There is an IIC interface EEPROM chip 24LC02 in the test plate, capacity sized 2 kbit (256 

bite). Due to the fact that the data is not lost after the EEPROM is powered down. Users can store 

some hardware setup data or user information. 

1. Learning the basic principles of the different IIC bus, mastering the IIC communication 

protocol 

2. Master the method of reading and writing EEPROM 

3. Joint debugging using logic analyzer 

 

11.2 Experiment Requirement 
 

1. Correctly write a number to any address in the EEPROM (this experiment writes to the 

register of 8'h03 address) through the FPGA (here changes the written 8-bit data value 

by (SW7~SW0)). After write in successfully, read the data as well. The read data is 

displayed directly on the segment decoders. 

2. Download the program into the FPGA and press the left push button PB1 to execute 

the data write EEPROM operation. Press the right push button PB2 to read the data 

that was just written. 

3. Determine whether the value read is correct or not by reading the value displayed on 

the segment decoders. If the segment decoders display the same value as written 

value, the experiment is successful. 

4. Analyze the correctness of the internal data with SignalTap II and verify it with the 

display of the segment decoders. 

 

11.3 Introduction to the IIC Agreement 
 

11.3.1 The Overall Timing Protocol of IIC Is as Follows 

1. Bus idle state: SDA, SCL are high 

2. Start of IIC protocol: SCL stays high, SDA jumps from high level to low level, generating a 

start signal 

3. IIC read and write data phase: including serial input and output of data and response 

model issued by data receiver 

4. IIC transmission end bit: SCL is high level, SDA jumps from low level to high level, and 

generates an end flag. See Fig 11. 1 
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Figure 11. 1 Timing protocol of IIC 

 

11.3.2 IIC Device Address 

 

 Each IIC device has a device address. When some device addresses are shipped from the 

factory, they are fixed by the manufacturer (the specific data can be found in the manufacturer's 

data sheet). Some of their higher bits are determined, and the lower bits can be configured by 

the user according to the requirement. The higher four-bit address of the EEPROM chip 24LC02 

used by the develop board has been fixed to 1010 by the component manufacturer. The lower 

three bits are linked in the develop board as shown below, so the device address is 1010000. See 

Fig 11. 2

 
Fig 11. 2 Device schematics of IIC  

 

11.4 The Key Code of Experiment, IIC_COM.v 
 

module iic_com( 

   clk,rst, 

            data, 

     

   sw1,sw2, 

   scl,sda, 

   iic_done, 

   dis_data 

  ); 

 

input clk;  // 50MHz 
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input rst;  

input sw1,sw2;  

inout scl;   

inout sda;   

output[7:0] dis_data;  

input [7:0] data ; 

output reg   iic_done =0 ; 

reg  [7:0] data_tep; 

reg  scl_link ; 

 

reg   [19:0] cnt_5ms ;  

reg sw1_r,sw2_r;  

reg[19:0] cnt_20ms;  

 

always @ (posedge clk or posedge rst_n) 

 if(rst) cnt_20ms <= 20'd0; 

 else cnt_20ms <= cnt_20ms+1'b1;  

 

always @ (posedge clk or posedge rst) 

 if(rst) begin 

   sw1_r <= 1'b0;  

   sw2_r <= 1'b0; 

  end 

 else if(cnt_20ms == 20'hfffff) begin 

   sw1_r <= sw1;  

   sw2_r <= sw2;  

  end 

 

//--------------------------------------------- 

   

reg[2:0] cnt;   

reg[8:0] cnt_delay;  

reg scl_r;   

 

always @ (posedge clk or posedge rst) 

 if(rst) cnt_delay <= 9'd0; 

 else if(cnt_delay == 9'd499) cnt_delay <= 9'd0;  

 else cnt_delay <= cnt_delay+1'b1;  

 

always @ (posedge clk or negedge rst) begin 

 if(rst) cnt <= 3'd5; 

 else begin 

  case (cnt_delay) 
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   9'd124: cnt <= 3'd1; //cnt=1:scl 

   9'd249: cnt <= 3'd2; //cnt=2:scl 

   9'd374: cnt <= 3'd3; //cnt=3:scl 

   9'd499: cnt <= 3'd0; //cnt=0:scl 

   default: cnt<=3'd5; 

   endcase 

  end 

end 

 

 

`define SCL_POS  (cnt==3'd0)  //cnt=0:scl 

`define SCL_HIG  (cnt==3'd1)  //cnt=1:scl 

`define SCL_NEG  (cnt==3'd2)  //cnt=2:scl 

`define SCL_LOW  (cnt==3'd3)  //cnt=3:scl 

 

always @ (posedge clk or posedge rst) 

    if(rst_n) data_tep <= 8'h00; 

 else   data_tep<= data ; // 

 

 

 

always @ (posedge clk or negedge rst) 

 if(rst) scl_r <= 1'b0; 

 else if(cnt==3'd0) scl_r <= 1'b1; //scl 

    else if(cnt==3'd2) scl_r <= 1'b0; //scl 

 

assign scl = scl_link?scl_r: 1'bz ;  

//--------------------------------------------- 

   

     

`define DEVICE_READ  8'b1010_0001  

`define DEVICE_WRITE 8'b1010_0000  

`define WRITE_DATA  8'b1000_0001  

`define BYTE_ADDR  8'b0000_0011   

reg[7:0] db_r;   

reg[7:0] read_data;  

 

//--------------------------------------------- 

   

parameter  IDLE  = 4'd0; 

parameter  START1  = 4'd1; 

parameter  ADD1  = 4'd2;                  

parameter  ACK1  = 4'd3;       
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parameter  ADD2  = 4'd4;      

parameter  ACK2  = 4'd5; 

parameter  START2  = 4'd6;     

parameter  ADD3  = 4'd7;      

parameter  ACK3 = 4'd8; 

parameter  DATA  = 4'd9;      

parameter  ACK4 = 4'd10; 

parameter  STOP1  = 4'd11;     

parameter  STOP2  = 4'd12;     

 

reg[3:0] cstate;  

reg sda_r;   

reg sda_link;    

reg[3:0] num;  

 

 

always @ (posedge clk or posedge rst) begin 

 if(rst) begin 

   cstate <= IDLE; 

   sda_r <= 1'b1; 

   scl_link <= 1'b1; 

   sda_link <= 1'b1; 

   num <= 4'd0; 

   read_data <= 8'b0000_0000; 

   cnt_5ms   <=20'h00000 ; 

   iic_done<=1'b0 ; 

  end 

 else     

  case (cstate) 

   IDLE: begin 

     sda_link <= 1'b1;    

     scl_link <= 1'b1; 

     iic_done<=1'b0 ;        

     if(sw1_r || sw2_r) begin     

      db_r <= `DEVICE_WRITE;  

      cstate <= START1;   

      end 

     else cstate <= IDLE;  

    end 

   START1: begin 

     if(`SCL_HIG) begin   

      sda_link <= 1'b1;  

      sda_r <= 1'b0;   
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      cstate <= ADD1; 

      num <= 4'd0;   

      end 

     else cstate <= START1;  

    end 

   ADD1: begin 

     if(`SCL_LOW) begin 

       if(num == 4'd8) begin  

         num <= 4'd0;    

         sda_r <= 1'b1; 

         sda_link <= 1'b0;   

         cstate <= ACK1; 

        end 

       else begin 

         cstate <= ADD1; 

         num <= num+1'b1; 

         case (num) 

          4'd0: sda_r <= db_r[7]; 

          4'd1: sda_r <= db_r[6]; 

          4'd2: sda_r <= db_r[5]; 

          4'd3: sda_r <= db_r[4]; 

          4'd4: sda_r <= db_r[3]; 

          4'd5: sda_r <= db_r[2]; 

          4'd6: sda_r <= db_r[1]; 

          4'd7: sda_r <= db_r[0]; 

          default: ; 

          endcase 

       //  sda_r <= db_r[4'd7-num];  

        end 

      end 

   //  else if(`SCL_POS) db_r <= {db_r[6:0],1'b0};  

     else cstate <= ADD1; 

    end 

   ACK1: begin 

     if(/*!sda*/`SCL_NEG) begin  

       cstate <= ADD2;  

       db_r <= `BYTE_ADDR;    

      end 

     else cstate <= ACK1;   

    end 

   ADD2: begin 

     if(`SCL_LOW) begin 

       if(num==4'd8) begin  
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         num <= 4'd0;    

         sda_r <= 1'b1; 

         sda_link <= 1'b0;   

         cstate <= ACK2; 

          

        end 

       else begin 

         sda_link <= 1'b1;   

         num <= num+1'b1; 

         case (num) 

          4'd0: sda_r <= db_r[7]; 

          4'd1: sda_r <= db_r[6]; 

          4'd2: sda_r <= db_r[5]; 

          4'd3: sda_r <= db_r[4]; 

          4'd4: sda_r <= db_r[3]; 

          4'd5: sda_r <= db_r[2]; 

          4'd6: sda_r <= db_r[1]; 

          4'd7: sda_r <= db_r[0]; 

          default: ; 

          endcase 

       //  sda_r <= db_r[4'd7-num];    

         cstate <= ADD2;      

        end 

      end 

   //  else if(`SCL_POS) db_r <= {db_r[6:0],1'b0};  

     else cstate <= ADD2;     

    end 

   ACK2: begin 

     if(/*!sda*/`SCL_NEG) begin   

      if(sw1_r) begin 

        cstate <= DATA;   

        db_r <= data_tep;         

       end  

      else if(sw2_r) begin 

        db_r <= `DEVICE_READ;  

        cstate <= START2;   

       end 

      end 

     else cstate <= ACK2;  

    end 

   START2: begin  

     if(`SCL_LOW) begin 

      sda_link <= 1'b1;  
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      sda_r <= 1'b1;   

      cstate <= START2; 

      end 

     else if(`SCL_HIG) begin  

      sda_r <= 1'b0;   

      cstate <= ADD3; 

      end   

     else cstate <= START2; 

    end 

   ADD3: begin  

     if(`SCL_LOW) begin 

       if(num==4'd8) begin  

         num <= 4'd0;    

         sda_r <= 1'b1; 

         sda_link <= 1'b0;   

         cstate <= ACK3; 

        end 

       else begin 

         num <= num+1'b1; 

         case (num) 

          4'd0: sda_r <= db_r[7]; 

          4'd1: sda_r <= db_r[6]; 

          4'd2: sda_r <= db_r[5]; 

          4'd3: sda_r <= db_r[4]; 

          4'd4: sda_r <= db_r[3]; 

          4'd5: sda_r <= db_r[2]; 

          4'd6: sda_r <= db_r[1]; 

          4'd7: sda_r <= db_r[0]; 

          default: ; 

          endcase        

  

        // sda_r <= db_r[4'd7-num];    

         cstate <= ADD3;      

        end 

      end 

    // else if(`SCL_POS) db_r <= {db_r[6:0],1'b0}; 

     else cstate <= ADD3;     

    end 

   ACK3: begin 

     if(/*!sda*/`SCL_NEG) begin 

       cstate <= DATA;  

       sda_link <= 1'b0; 

      end 
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     else cstate <= ACK3;    

    end 

   DATA: begin 

     if(sw2_r) begin  

       if(num<=4'd7) begin 

        cstate <= DATA; 

        if(`SCL_HIG) begin  

         num <= num+1'b1;  

         case (num) 

          4'd0: read_data[7] <= sda; 

          4'd1: read_data[6] <= sda;   

          4'd2: read_data[5] <= sda;  

          4'd3: read_data[4] <= sda;  

          4'd4: read_data[3] <= sda;  

          4'd5: read_data[2] <= sda;  

          4'd6: read_data[1] <= sda;  

          4'd7: read_data[0] <= sda;  

          default: ; 

          endcase        

           

     //    read_data[4'd7-num] <= sda;  

         end 

    //    else if(`SCL_NEG) read_data <= 

{read_data[6:0],read_data[7]};  

        end 

       else if((`SCL_LOW) && (num==4'd8)) begin 

        num <= 4'd0;    

        cstate <= ACK4; 

        end 

       else cstate <= DATA; 

      end 

     else if(sw1_r) begin  

       sda_link <= 1'b1;  

       if(num<=4'd7) begin 

        cstate <= DATA; 

        if(`SCL_LOW) begin 

         sda_link <= 1'b1;   

         num <= num+1'b1; 

         case (num) 

          4'd0: sda_r <= db_r[7]; 

          4'd1: sda_r <= db_r[6]; 

          4'd2: sda_r <= db_r[5]; 

          4'd3: sda_r <= db_r[4]; 
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          4'd4: sda_r <= db_r[3]; 

          4'd5: sda_r <= db_r[2]; 

          4'd6: sda_r <= db_r[1]; 

          4'd7: sda_r <= db_r[0]; 

          default: ; 

          endcase        

  

        // sda_r <= db_r[4'd7-num];  

         end 

   //     else if(`SCL_POS) db_r <= {db_r[6:0],1'b0};  

         end 

       else if((`SCL_LOW) && (num==4'd8)) begin 

         num <= 4'd0; 

         sda_r <= 1'b1; 

         sda_link <= 1'b0;   

         cstate <= ACK4; 

        end 

       else cstate <= DATA; 

      end 

    end 

   ACK4: begin 

     if(/*!sda*/`SCL_NEG) begin 

//      sda_r <= 1'b1; 

      cstate <= STOP1;       

      end 

     else cstate <= ACK4; 

    end 

   STOP1: begin 

     if(`SCL_LOW) begin 

       sda_link <= 1'b1; 

       sda_r <= 1'b0; 

       cstate <= STOP1; 

      end 

     else if(`SCL_HIG) begin 

       sda_r <= 1'b1;  

       cstate <= STOP2; 

      end 

     else cstate <= STOP1; 

    end 

   STOP2: begin 

     if(`SCL_NEG)  begin   sda_link <= 1'b0;  scl_link <= 1'b0;  end  

     else if(cnt_5ms==20'h3fffc)   begin cstate <= IDLE; 

cnt_5ms<=20'h00000;  iic_done<=1 ; end 
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     else begin cstate <= STOP2   ;    cnt_5ms<=cnt_5ms+1 ; end 

    end 

   default: cstate <= IDLE;   

   endcase 

end 

 

assign sda = sda_link ? sda_r:1'bz; 

assign dis_data = read_data; 

 

endmodule 

 

11.5 Downloading to the Board 
 

1. Lock the pins 

Signal Name Port Description Network Label FPGA Pin 

clk System clock 50 MHz C10_50MCLK 91 

rst Reset, default value is 

low 

KEY3 11 

sm_db[0] Segment decoder seg a SEG_PA 132 

sm_db [1] Segment decoder seg b SEG_PB 137 

sm_db [2] Segment decoder seg c SEG_PC 133 

sm_db [3] Segment decoder seg d SEG_PD 125 

sm_db [4] Segment decoder seg e SEG_PE 126 

sm_db [5] Segment decoder seg f SEG_PF 138 

sm_db [6] Segment decoder seg g SEG_PG 135 

sm_db [7] Segment decoder seg h SEG_DP 125 

sm_cs1_n Segment decoder seg 2 SEG_3V3_D1 142 

sm_cs2_n Segment decoder seg 1 SEG_3V3_D0 136 

data[0] DIP switch input SW0 80 

data[1] DIP switch input SW1 83 

data[2] DIP switch input SW2 86 

data[3] DIP switch input SW3 87 

data[4] DIP switch input SW4 74 

data[5] DIP switch input SW5 75 

data[6] DIP switch input SW6 76 

data[7] DIP switch input SW7 77 

sw1 Write EEPROM button KEY0 3 

sw2 Read EEPROM button KEY1 7 

scl EEPROM clock       I2C_SCL         R20 

sda EEPROM data line I2C_SDA R21 

 

2. After the program is downloaded to the board, press the left push button PB1 to write 
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the 8-bit value represented by SW7~SW0 to EEPROM. Then press the right push button 

PB 2 to read the value from the written position. Observe the value displayed on the 

segment decoders on the develop board and the value written in the 8'h03 register of 

the EEPROM address (SW7~SW0) (Here, it writes to 8'h34 address). The read value is 

displayed on the segment decoders. See Fig 11. 3 

 
Fig 11. 3 Demonstration of develop board 
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Experiment 12 AD, DA Experiment 

 

12.1 Experiment Objective 
 

Since in the real world, all naturally occurring signals are analog signals, and all that are read 

and processed in actual engineering are digital signals. There is a process of mutual conversion 

between natural and industrial signals (digital-to-analog conversion: DAC, analog-to-digital 

conversion: ADC). The purpose of this experiment is twofold: 

1. Learning the theory of AD conversion 

2. Read the value of AD acquisition from PCF8591, and convert the value obtained into 

actual value, display it with segment decoders 

  

12.2 Experiment Requirement 
 

1. Perform analog-to-digital conversion using the ADC port of the chip and display the 

collected voltage value through the segment decoders. 

2. Board downloading verification for comparison 

3. Introduction to PCF8591: The PCF8591 uses the IIC bus protocol to communicate with 

the controller (FPGA). Please refer to the previous experiment for the contents of the IIC 

bus protocol. The first four bits of the device address are 1001, and the last three bits 

are determined by the actual circuit connection (here the circuit is grounded, so the 

device address is 7'b1001000). The LSB is the read/write control signal. After sending 

the device address information and the read/write control word are done, the control 

word information is sent. The specific control word information is shown in Figure 12. 1. 

 
Fig 12. 1 PCF8591 address byte 

 Here, the experiment uses the DIP switch (SW1, SW0) input channel as the AD acquisition 

input channel. Configure the control information as (8’h40). For more details, refer to the 

datasheet of PCF8591. 

SW1，SW0 Channel Selection Collection Object 

00 0 Photosensitive Resistor Voltage Value 

01 1 Thermistor Voltage Value 

10 2 Adjustable Voltage Value 

 

12.3 Experiment 
 

1. Program design and review the top-down design method used before. 



89 

 

2. The top-level entity is divided into three parts: the segment decoder driver part, the AD 

sampling part of the PCF and the IIC serial port driver part. 

3. Refer to the project file adda_test for the program part. 

 

12.4 Downloading to the Board 
 

Signal Name Port Description Network Label FPGA Pin 

clk System clock 50MHz C10_50MCLK 91 

rst Reset, default value is low KEY3 11 

sm_db[0] Segment decoder seg a SEG_PA 132 

sm_db [1] Segment decoder seg b SEG_PB 137 

sm_db [2] Segment decoder seg c SEG_PC 133 

sm_db [3] Segment decoder seg d SEG_PD 125 

sm_db [4] Segment decoder seg e SEG_PE 126 

sm_db [5] Segment decoder seg f SEG_PF 138 

sm_db [6] Segment decoder seg g SEG_PG 135 

sm_db [7] Segment decoder seg h SEG_DP 128 

data[0] DIP switch input SW0 80 

data[1] DIP switch input SW1 83 

data[2] DIP switch input SW2 86 

data[3] DIP switch input SW3 87 

data[4] DIP switch input SW4 74 

data[5] DIP switch input SW5 75 

data[6] DIP switch input SW6 76 

data[7] DIP switch input SW7 77 

scl PCF8591 clock line ADDA_I2C_SCL         53 

sda PCF8591 data line ADDA_I2C_SDA 52 

sel[0] Segment decoder position 

selection 

SEG_3V3_D0 124 

sel[1] Segment decoder position 

selection 

SEG_3V3_D1 127 

sel[2] Segment decoder position 

selection 

SEG_3V3_D2 129 

sel[3] Segment decoder position 

selection 

SEG_3V3_D3 141 

sel[4] Segment decoder position 

selection 

SEG_3V3_D4 142 

sel[5] Segment decoder position 

selection 

SEG_3V3_D5 136 

Note: The six segment decoders are reversed in order due to actual observations. 
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Experiment 13 VGA Experiment 

 

13.1 Experiment Objective 
 

1. Master the principle of VGA implementation 

2. Design a simple VGA image display (The design here is a vertical color bar) 

 

13.2 VGA Principle 
 

 VGA (Video Graphics Array) is a computer display standard that IBM introduced in 1987 

using analog signals. VGA is a low standard that is supported by most manufacturers. PCs must 

support the VGA standard before loading their own unique drivers. The schematic diagram of the 

VGA PCB is shown in Figure 13. 1 

 
Fig 13. 1 PCB schematics 

 The VGA scanning mode on the display is divided into progressive scanning and interlaced 

scanning: progressive scanning is scanning from the top left corner of the screen, scanning from 

left to right point by point, each time a line is finished, the electron beam returns to the starting 

position of the next line on the left of the screen. During the process the CRT blanks the electron 

beam, and at the end of each line, synchronizes with the line sync signal; when all the lines are 

scanned, a frame is formed. The field sync signal is used for field synchronization and make the 

scan back to the top left of the screen, while performing field blanking, start the next frame. 

Interlaced scanning refers to scanning every other line in the scanning of electron beams. After 

scanning one screen and then returning to scan the remaining lines, the interlaced display flashes 

quickly, which may cause eye fatigue. (This experiment uses progressive scanning). See Fig 13. 2, 

13. 3 
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Fig 13. 2 Column synchronization timing 

 
Fig 13. 3 Row synchronization timing 

 The definition of the row timing and column timing in the VGA requires a sync pulse (a 

segment), a display trailing edge (b segment), and a display timing segment (c segment) and a 

display leading edge (d segment). VGA industry standard display mode requirements: row 

synchronization, column synchronization is both negative, that is, the synchronization pulse is 

required to be a negative pulse. According to the VGA row timing, each row has a negative row 

sync pulse (a segment), which is the end mark of the data line and the start mark of the next row. 

After the sync pulse is the display trailing edge (b segment), during the display timing segment (c 

segment), the display is bright, and the RGB data drives each pixel on the row to display one row. 

At the end of a row is the display leading edge (d segment). No image is projected onto the 

screen outside the display timing period, but a blanking signal is inserted. The sync pulse, display 

trailing edge, and display leading edge are all within the line blanking interval. When the blanking 

is valid, the RGB signal is invalid and the screen does not display data. 

The column timing of VGA is basically the same as the row timing analysis. 

VGA also has many display standards. In this experiment, we use the standard of 640×480@60 

Hz. The standard overview is shown in Fig 13. 4. 

 

 
Fig 13. 4 VGA display standard 

Display mode 
Rows Columns Clock 
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 Take the display standard 640*480*60 Hz of this experiment as an example. (640 is the 

number of columns, 480 is the number of rows, 60 Hz is the frequency to refresh a screen). Line 

timing: The number of lines corresponding to the screen is 525 (a + b + c + d = e segments), of 

which 480 (c segment) is the display row; each row has a line synchronization signal (a segment), 

which is 2 row periods Low level. Column timing: Each display line consists of 800 columns (a + b 

+ c + d = e segments), where 640 (c segment) is the valid display areas, and each row has a row 

sync signal (a segment) of 96 column periods Low level. 

 

13.3 Experiment 
 

1. Experimental design and module description 

a. Clock frequency division module (Refer to the previous experiment, call PLL) 

b. The main task of the control module (Refer to the project file vga_driver module) is 

to display the pixels to the active area. 

c. The main task of the display module (refer to the project file vga_display module) 

is to divide the display area and fill in the color as required in each block. 

2. Board downloading verification 

As shown in Fig 13. 5, the screen is divided into five vertical bars, white, black, red, 

green, and blue. 

 
Fig 13. 5 VGA verification 
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