

PRA040 USER EXPERIMENTAL MANUAL

PRA040 EXPERIMENTAL INSTRUCTIONS

FRASER INNOVATION INC

December 07, 2019

Version Control

version	Date	Description			
1.0	07/20/2019	Initial Release			
1.1	07/29/2019	Add Experiment 15			
1.2	07/31/2019	Revised some description about HDMI			
1.3	08/16/2019	SRAM part revised			
1.4	08/30/2019	Add a description in Ethernet			
1.5	09/17/2019	Revise some syntax and code error			
1.6	12/06/2019	Add Experiments 16-19			

Contents

10 10 10 11 11
10 10 10 11
10 10 11 11
10 11 11
11 11
11
11
16
18
18
18
18
18
19
19
32
32
35
38
38
38
38
38
39
39
1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Experime	nt 3 Segment Display4	6				
3.1	3.1 Experiment Objective46					
3.2	Experiment Implement					
3.3	Experiment4	6				
	3.3.1 Introduction to the Segment Display4	6				
	3.3.2 Hardware Design	8				
	3.3.3 Program Design	.9				
3.4	Flash Application and Experimental Verification5	4				
Experime	nt 4 Block/SCH5	9				
4.1	Experiment Objective5	9				
4.2	Experiment Implement5	9				
4.3	Experiment5	9				
4.4	Experiment Verification6	64				
Experime	nt 5 Button Debounce6	5				
5.1	Experiment Objective6	5				
5.2	Experiment Implement6	5				
5.3	Experiment6	5				
	5.3.1 Introduction to Button and Debounce Principle	5				
	5.3.2 Hardware Design	7				
	5.3.3 Program Design	57				
5.4	Experiment Verification7	'1				
Experime	nt 6 Use of Multipliers and ModelSim7	'4				
6.1	Experiment Objective7	'4				
6.2	Experiment Implement7	'4				
6.3	Experiment	'4				
	6.3.1 Introduction of Program7	'4				
6.4	Use of ModelSim and the Experiment Verification7	'8				
Sum	mary and Reflection8	9				
Experime	nt 7 Hexadecimal Number to BCD Code Conversion and Application9	0				
	4 / 30)4				

7.1	Experiment Objective9				
7.2	Experimental Implement	90			
7.3	Experiment	90			
	7.2.1 Introduction to the Principle of Converting Hexadecimal Number to BCD Converting	de90			
	7.2.2 Introduction of the Program	92			
7.4	Application of Hexadecimal Number to BCD Number Conversion	95			
7.5	Experiment Verification	97			
Exp	periment Summary and Reflection	99			
Experime	ient 8 Use of ROM	100			
8.1	Experiment Objective	100			
8.2	Experiment Implement	100			
8.3	Experiment	100			
	8.3.1 Introduction of the Program	100			
8.4	Experiment Verification	105			
Exp	periment Summary and Reflection	106			
Experime	ient 9 Use Dual-port RAM to Read and Write Frame Data	107			
9.1	Experiment Objective	107			
9.2	Experiment Implement	107			
9.3	Experiment	108			
	9.3.1 Introduction of the program	108			
9.3	Experiment Verification	120			
9.3 Exp	beriment Summary and Reflection	120 122			
9.3 Expe Experime	Experiment Verification periment Summary and Reflection ient 10 Asynchronous Serial Port Design and Experiment	120 122 124			
9.3 Exp Experime 10.1	Experiment Verification periment Summary and Reflection nent 10 Asynchronous Serial Port Design and Experiment 1 Experiment Objective	120 122 124 124			
9.3 Exp Experime 10.1 10.2	Experiment Verification periment Summary and Reflection nent 10 Asynchronous Serial Port Design and Experiment 1 Experiment Objective 2 Experiment Implement	120 122 124 124 124			
9.3 Experime 10.1 10.2 10.3	Experiment Verification Deriment Summary and Reflection Dent 10 Asynchronous Serial Port Design and Experiment 1 Experiment Objective 2 Experiment Implement 3 Experiment	120 122 124 124 124 124			
9.3 Experime 10.1 10.2 10.3	Experiment Verification Deriment Summary and Reflection Dent 10 Asynchronous Serial Port Design and Experiment 1 Experiment Objective 2 Experiment Implement 3 Experiment 10.3.1 Introduction to the UART Interface	120 122 124 124 124 124 124			
9.3 Experime 10.1 10.2 10.3	Experiment Verification Deriment Summary and Reflection Dent 10 Asynchronous Serial Port Design and Experiment 1 Experiment Objective 2 Experiment Implement 3 Experiment Implement 10.3.1 Introduction to the UART Interface 10.3.2 Hardware Design	120 122 124 124 124 124 124 125			
9.3 Experime 10.1 10.2 10.3	Experiment Verification Deriment Summary and Reflection Dent 10 Asynchronous Serial Port Design and Experiment 1 Experiment Objective 2 Experiment Implement 3 Experiment Implement 10.3.1 Introduction to the UART Interface 10.3.2 Hardware Design 10.3.3 Introduction of the Program	120 122 124 124 124 124 124 125 126			

10.4	Experi	iment Verification	133				
Experime	nt 11 IIC	Protocol Transmission	135				
11.1	11.1 Experiment Objective135						
11.2	Experi	iment Implement	135				
11.3	Experi	iment	135				
	11.3.1	Introduction of EEPROM and IIC Protocol	135				
	11.3.2	Hardware Introduction	136				
	11.3.3	Introduction to the program	137				
11.4	Experim	nent Verification	150				
Experime	nt 12 AD), DA Experiment	153				
12.1	Experim	nent Objective	153				
12.2	Experi	iment Implement	153				
12.3	Experi	iment	153				
	12.3.1	Introduction to AD Conversion Chip PCF8591	153				
	12.3.2	Hardware Design	155				
	Introduo	ction to the Program	155				
12.4	Introduo Experi	ction to the Program	155				
12.4 Experime	Introduc Experi nt 13 HD	ction to the Program iment Verification DMI Display	155 158 162				
12.4 Experime 13.1	Introduc Experi nt 13 HC Experi	ction to the Program iment Verification DMI Display iment Objective	155 158 162 162				
12.4 Experime 13.1 13.2	Introduc Experi nt 13 HE Experi Experi	ction to the Program iment Verification DMI Display iment Objective iment Implement	155 158 162 162 162				
12.4 Experime 13.1 13.2 13.3	Introduc Experi nt 13 HE Experi Experi Experi	ction to the Program iment Verification DMI Display iment Objective iment Implement	155 158 162 162 162 162 162				
12.4 Experime 13.1 13.2 13.3	Introduc Experi nt 13 HE Experi Experi Experi 13.3.1	ction to the Program iment Verification DMI Display iment Objective iment Implement iment Introduction to HDMI and ADV7511 Chip	155 158 162 162 162 162 162 162				
12.4 Experime 13.1 13.2 13.3	Introduc Experi nt 13 HE Experi Experi 13.3.1 13.3.2	ction to the Program iment Verification DMI Display iment Objective iment Implement iment Introduction to HDMI and ADV7511 Chip Hardware Design	155 158 162 162 162 162 162 162 163				
12.4 Experime 13.1 13.2 13.3	Introduc Experi nt 13 HE Experi Experi 13.3.1 13.3.2 13.3.3 h	ction to the Program iment Verification DMI Display iment Objective iment Implement iment Introduction to HDMI and ADV7511 Chip Hardware Design ntroduction to the Program	155 158 162 162 162 162 162 163 163 164				
12.4 Experime 13.1 13.2 13.3	Introduc Experi nt 13 HE Experi Experi 13.3.1 13.3.2 13.3.3 li 13.4 E	ction to the Program iment Verification DMI Display iment Objective iment Implement iment Introduction to HDMI and ADV7511 Chip Hardware Design ntroduction to the Program	155 158 162 162 162 162 162 163 164 164 174				
12.4 Experime 13.1 13.2 13.3 Experime	Introduc Experi nt 13 HE Experi Experi 13.3.1 13.3.2 13.3.3 li 13.4 E nt 14 Eth	ction to the Program iment Verification DMI Display iment Objective iment Implement iment Implement introduction to HDMI and ADV7511 Chip Hardware Design ntroduction to the Program Experiment Verification	155 158 162 162 162 162 162 163 164 174 177				
12.4 Experime 13.1 13.2 13.3 Experime 14.1	Introduc Experi nt 13 HE Experi Experi 13.3.1 13.3.2 13.3.3 li 13.4 E nt 14 Eth Experi	ction to the Program iment Verification DMI Display iment Objective iment Implement iment Implement iment Introduction to HDMI and ADV7511 Chip Hardware Design htroduction to the Program Experiment Verification hernet iment Objective	155 158 162 162 162 162 162 163 163 164 174 177 177				
12.4 Experime 13.1 13.2 13.3 Experime 14.1 14.2	Introduc Experi nt 13 HE Experi Experi 13.3.1 13.3.2 13.3.3 li 13.4 E nt 14 Eth Experi Experi	ction to the Program iment Verification DMI Display iment Objective iment Implement iment Implement Introduction to HDMI and ADV7511 Chip Hardware Design hardware Design introduction to the Program Experiment Verification hernet iment Objective iment Implement	155 158 162 162 162 162 162 163 164 174 177 177				
12.4 Experime 13.1 13.2 13.3 Experime 14.1 14.2 14.3	Introduc Experi nt 13 HC Experi Experi 13.3.1 13.3.2 13.3.3 li 13.4 E nt 14 Eth Experi Experi Experi	ction to the Program iment Verification DMI Display iment Objective iment Implement iment Introduction to HDMI and ADV7511 Chip Hardware Design Hardware Design Experiment Verification hernet iment Objective iment Implement	155 158 162 162 162 162 162 163 164 174 177 177 177 177				

		14.3.1	Introduction to Experiment Principle	177
		14.3.2 I	Hardware Design	180
		14.3.3	Design of the Program	
	14.4	Exper	riment Verification	207
Expe	erime	ent 15 SF	RAM Read and Write	211
	15.1	Exper	riment Objective	211
	15.2	Exper	riment Implement	211
	15.3	Exper	riment	211
		15.3.1	Introduction to SRAM	211
		15.3.2	Hardware Design	212
		15.3.3	Introduction to the Program	212
	15.4	Exper	riment Verification	219
Expe	erime	ent 16 89	978 Audio Loopback Experiment	225
	16.1	. Exper	riment Objective	225
	16.2	Exper	riment Implement	225
	16.3	Exper	riment	225
		16.3.1	WM8978 Introduction	225
		16.3.2	WM8978 Control Interface Timing	226
		16.3.3 I	I2S Audio Bus Protocol	226
		16.3.4	Main Program Design	227
	16.4	Experin	nent Verification	246
Expe	erime	ent 17 Pł	hoto Display Experiment of OV5640 Camera	248
	17.1	. Exper	riment Objective	248
	17.2	Exper	riment Implement	248
	17.3	Exper	riment	248
	17.4	Experin	nent Verification	276
Expe	erime	ent 18 Hi	igh-speed ADC9226 Acquisition Experiment	282
	18.1	. Experin	nent Objective	282
	18.2	2 Experin	nent Implement	282
				7 / 304

18.3 Experiment	282
18.3.1 ADC9226 Module Introduction	282
18.3.2 Program Design	282
18.4 Experiment Verification	
Experiment 19 DAC9767 DDS Signal Source Experiment	292
19.1 Experiment Objective	292
19.2 Experiment Implement	292
19.3 Experiment	292
19.3.1 DDS Introduction	292
19.3.2 AD9767 Configuration Introduction	293
19.3.3 Waveform Memory File Configuration	293
19.3.4 Program Design	294
19.4 Experiment Verification	
References:	

Project Files Appendix

Experiment 1: LED_shifting Experiment 2: SW_LED Experiment 3: BCD_counter Experiment 4: block_counter Experiment 5: block_debouncing Experiment 6: mult_sim Experiment 7: HEX_BCD, HEX_BCD_mult Experiment 8: memory_rom Experiment 9: dual_port_ram Experiment 10: UART_FRAME Experiment 11: eeprom_test Experiment 12: adda_test Experiment 13: hdmi Experiment 14: Ethernet Experiment 15: SRAM Experiment 16: audio_test Experiment 17: 5640_camera_pcie Experiment 18: high_speed_ad

Experiment 19: dac_9767_test

Part One: Introduction of FII-PRA040 Development System

1、 Design Objective of the System

The main purpose of this system design is to complete FPGA learning, development and experiment with Intel Quartus. The main device uses the Intel Cyclone10 10CL040YF484C8G and is currently the latest generation of FPGA devices from Intel. The major learning and development projects can be completed as follows:

- (1) Basic FPGA design training
- (2) Construction and training of the SOPC (NiosII) system
- (3) IC design and verification, the system provides hardware design, simulation and verification of RISC-V CPU
- (4) Development and application based on RISC-V
- (5) The system is specifically optimized for hardware design for RISC-V system applications

2、System Resource

- (1) Extended memory: Two Super SRAM (IS61WV25616, 256K x 16bit) are connected in parallel to form a 32-bit data interface, and the maximum access space is up to 1M bytes.
- (2) Serial flash: Spi interface serial flash (16M bytes)
- (3) Serial EEPROM
- (4) Gigabit Ethernet: 100/1000 Mbps
- (5) USB to serial interface: USB-UART bridge

3、Human-computer Interaction Interface

(1) 8 DIP switches

- (2) 8 push buttons, definition of 7 push buttons: MENU, UP, RETUN, LEFT, OK, RIGHT, DOWN, 1 for reset: RESET
- (3) 8 LEDs
- (4) 6 7-segment LED display
- (5) I2C bus interface
- (6) UART external interface
- (7) Two JTAG programming interfaces: One is for downloading the FPGA debug interface, and the other is the JTAG debug interface for RISC-V CPU
- (8) Built-in RISC-V CPU software debugger, no external RISC-V JTAG emulator required
- (9) 4 12-pin GPIO connectors, in line with PMOD interface standards

4、 Software Development System

- (1) Quartus 18.0 and later version for FPGA development, Nios-II SOPC
- (2) Freedom Studio-Win_x86_64 software development for RISC-V CPU

5 Supporting Resources

RISC-V	JTAG Debugger
Intel Altera	JTAG Download Debugger
FII-PRA040	User Experimental Manual
FII-PRA040	Hardware Reference Guide

6、 Physical Picture

(1) FII-PRA040 system block diagram

ſ	Po	ower	Pov	ver	Power Sour	ce	JTAG	нрмі	ower	y and	nload face	JART	6-dig	it 7-segment
	Inte	erface	But	ton	Selection				8	뤝	in a ta	8	LE	D display
	0	ace	al I2C	face	TFTLCD		Video Chip		5	3	<u> </u>	۳ ۳		Gigabit
	GPI	Interf	Externi	Inter	Interface		ADV(7511	32K Ost	illator		Serial	Etherne	t Chip	Ethernet
l	~	ខ		a	FLACU		ADVISII				Chip	RTL82	11E	Interface
	GPIC	Interfa	PCIE	iterfac	128Mbit			FPGA			Externa	al serial In	terface	USB1
Ľ				-										
	e	The	ermiste	or	EEPROM		Cy	clone10				2 SRAMs		USB2
	terfa	Phot	oresis	tor	AT24C02						USB Mouse and Keyboard		USB3	
	۳ ۵۶	Poter	ntiome	eter	AD/DA	A	udio Chip	50M Os	cillator		Control Chip			
	xternal 4	utput	nput		(Back)		WM8978					8 LEDs		USB4
	ш	Audio O	Audio I	GPIC	D Interface	SPIC	O Interface	7 Push B	uttons		8 (DIP Switch	ies	Reset

Figure 1 PRA040 system block diagram

(2) FII-PRA040 physical picture

Figure 2 PRA040 physical front view

Figure 3 PRA040 physical back view

- (3) Corresponding to the physical picture, the main devices on board are as follows:
- 1、10CL040YE484C8G chip
- 2 、 External 12V power interface

- 3、 GPIO interface
- 4、Thermistor (NTC-MF52)
- 5、Photoresistor
- 6、 Potentiometer
- 7、 Audio output (green), audio input (red)
- 8、 PCIE interface
- 9、TFTCLD interface
- 10、 Audio chip (WM8978)
- 11_{\sim} 7 push buttons
- 12 \sim 50M system clock
- 14、Video chip(ADV7511)
- 15、 External JTAG download interface
- 16、 HDMI interface
- 17 USB power supply and download interface
- 18、 FPGA and RISC_V JTAG download chips (FT2232)
- 19、USB_UART interface
- 20、 Serial chip (CP2102)
- 21、 6 7-segment LED display
- 22、Ethernet interface
- 23、 Ethernet PHY chip (RTL8211E-VB)
- 24、4 USB interfaces
- 25_{S} USB mouse and keyboard control chip
- 26、8 LEDs
- 27、8-bit DIP switch
- 28、Reset button
- 29、 Power button
- 30、Flash (N25Q128A, 128M bit/16M bytes)
- 31、 EEPROM (AT24C02N)
- 32、Two SRAMs

33、 AD/DA conversion chip (PCF8591)

Part Two: FII-PRA040 Main Hardware Resources Usage and FPGA Development Experiment

This part mainly guides the user to learn the development of FPGA program and the use of onboard hardware through the development example of FPGA. At the same time, the application system software Quartus is introduced from the elementary to the profound. The development exercises covered in this section are as follows:

Experiment 1: LED shifting design

Experiment 2: SignalTap experiment

Experiment 3: Segment display experiment

Experiment 4: Block/SCH experiment

Experiment 5: button debouncing experiment

Experiment 6: use of multiplier and ModelSim simulation

Experiment 7: hex to BCD conversion and application

Experiment 8: usage of ROM

Experiment 9: use dual-ROM to read and write frame data

Experiment 10: asynchronous serial port design and experiment

Experiment 11: IIC transmission experiment

Experiment 12: AD/DA experiment

Experiment 13: HDMI experiment

Experiment 14: Ethernet experiment

Experiment 15: SRAM read and write

Experiment 16: Audio test

Experiment 17: OV5640 camera experiment

Experiment 18: ADC9226 sampling experiment

Experiment 19: DAC9767 DDS signal source experiment

Learning exercises in the order of the experimental design, and successfully completing

these basic experiments, we will be able to achieve the level and capabilities of the primary FPGA engineers.

Experiment 1 LED shifting

1.1 Experiment Objective

- (1) Practice to use Quartus II to create new projects and use system resources IP Core;
- (2) Proficiency in the writing of Verilog HDL programs to develop a good code writing style;
- (3) Master the design of the frequency divider to implement the shifting LED;
- (4) Combine hardware resources to perform FPGA pin assignment and implement actual program downloading;
- (5) Observe the experiment result and summarize it.

1.2 Experiment Implement

- (1) Use all LEDS, all light up during reset;
- (2) End reset, LED lights from low to high (from right to left) in turn;
- (3) Each LED is lit for one second;
- (4) After the last (highest position) LED is lit, the next time it returns to the first (lowest position) LED, the loop is achieved;

1.3 Experiment

1.3.1 LED Introduction

LED (Light-Emitting Diode), is characterized by low operating current, high reliability and long life. Up to now, there are many types of LED lights, as shown in Figure 1.1. The FII-PRA040 uses the LED lights in the red circle.

Figure 1.1 Different kinds of LEDs

1.3.2 Hardware Design

The physical picture of the onboard 8-bit LED is shown in Figure 1.2. The schematics of LED is shown in Figure 1.3. The LED module of this experiment board adopts 8 common anode LEDs, which are connected with Vcc 3.3V through 180 R resistors, and the cathodes are directly connected and controlled by the FPGA. When the FPGA outputs a low level of 0, a current flows through the LED, and it is turned on.

LED7	LED6	LED5	LED4	LED3	LED2	LED1	LED0
				63)			(EGT)

VCC3V3			14		
T	R114	180 R	LED7	Green	LED7
			1		
	R115	180R	LED6	Green	LED6
	R116	180R	LEDS	Green	LED5
	R117	180 R	LED4	Green	LED4
	R118	180R	LED3	Green	LED3
	R119	1808	LED2	Green	LED2
				orten	
	R120	180R	LED1	Green	LED1
	R121	180 R	LEDO	Green	LED0
-					

Figure 1.2 8-bit LED physical picture

Figure 1.3 Schematics of LED

1.3.3 Program Design

1.3.3.1 Start Program

Before writing a program, let's briefly introduce the development environment we use and how to create a project. Take Quartus II 18.1 as an example. The specific project establishment steps are shown in Figure 1.4 to 1.9.

As shown in Figure 1.4, after opening Quartus, you can directly click New Project
 Wizard in the middle of the screen to create a new project. You can also click File to create a new project in the toolbar, or press Ctrl+N to create a new project.

🕥 Quartus Prime Standard Edition		- 🗆 X
File Edit View Project Assignments Proces	sing Tools Window Help	Search altera.com
) 7 0 1 1 2 2 2 2		译长长辞辨导急民贷认错的[地距]用语或[合]
Project Navigator 🔥 Hierarchy 🔹 🤉 🗗 🗙	Home 🛛	IP Catalog 🛛 📮 🗗 🗙
A Compilation Hierarchy		Device Family Cyclone 10 LP 🔻
	Recent Projects	 × =.
	Ied_run.qpf (E:/kdb_shiyan/led_run/code/led_run/led_run.qpf)	Y 💐 Installed IP
	test.qpf (E:/test/test.qpf)	Project Directory
		No Selection Available
	New Project Wizard	ct > Basic Functions
		> DSP
		> Interface Protocols
	Documentation Training Support What's New	Memory Interfaces and Controllers Notifications Processors and Peripherals
		> University Program
Tasks Compilation ▼ ≡ 및 & ×		Search for Partner IP
Task		
✓ ► Compile Design		
> Nalysis & Synthesis		
> Fitter (Place & Route)		
Assembler (Generate programm		
Timing Analysis	Close page after project load	(intel)
<	Don't show this screen again	+ Add
x	😽 Find 👼 Find Next	
Type ID Message		
S.		
S Custum Proceeding		>
Σ system riocessing		0% 00.00.00

Figure 1.4 The main Quartus II interface

(2) As shown in Figure 1.5, select the correct project path. The project is named *LED_shifting*. It is recommended that the path is easy to find and convenient for later viewing and calling.

le New Project Wizard	×
Directory, Name, Top-Level Entity	
What is the <u>w</u> orking directory for this project?	
C:/Users/Raytine/Desktop/LED_shifting	
What is the name of this project?	
LED_shifting	
What is the name of the top-level design entity for this project? This name is case sensitive and must exactly match the entity name in the design file.	e
LED_shifting	
< <u>B</u> ack <u>N</u> ext > <u>E</u> inish Cancel <u>H</u>	elp.

Figure 1.5 Name and define the path of the project file

(3) As shown in Figure 1.6, you can directly add some files written in advance. Since it is a new project, click **Next** to perform the next step.

File name:						Add
٩					×	Add Al
File Name	Type Library	Design Entry/Synthesis Tool	HDL Version			Remov
						Up
						Down
						Propertie
1						

(5) As shown in Figure 1.7, select the correct FPGA chip model, the onboard chip model is 10CL040YF484C8G. Selecting Cyclone 10 LP in the Family, FBGA in the package, 484 in the Pin count, and 8 in the Core speed grage helps narrow down the selection and quickly find the target model.

	Board									
elect the	family and	device you want to	target for co	mpilation.						
'ou can in	istall additi	onal device support	with the Ins	tall Devices com	mand on the Too	ols m	enu.			
o determi	ine the ver	sion of the Quartus I	Prime softw	are in which your	r target device is s	supp	oorted, refer to	the <u>Devic</u>	e Support List	webpag
Device fa	amily				Show in 'Availa	able o	devices' list			
<u>F</u> amily:	Cyclone 1	0 LP		•	Pac <u>k</u> age:		FBGA			•
Device	e: All			~	Pin <u>c</u> ount:		484			•
										_
Target de	evice				Core speed gra	ade:	8			•
Target de	evice device sel	ected by the Fitter			Core sp <u>e</u> ed gra Name filter:	ade:	8			•
Target de O <u>A</u> uto	evice device sele	ected by the Fitter	devices' lis	+	Core sp <u>e</u> ed gra	ade:	8			
Target de	evice device sele ific device : er. n/a	ected by the Fitter selected in 'Available	e devices' lis	t	Core sp <u>e</u> ed gra Name filter: ☑ S <u>h</u> ow advar	ade: nced	8 devices			
Target de <u>A</u> uto <u>S</u> peci <u>O</u> the	evice device sele ific device : r: n/a	ected by the Fitter selected in 'Available	e devices' lis	t	Core sp <u>e</u> ed gra Name filter: S <u>h</u> ow advar	ade: nced	8 devices			
Target de <u>A</u> uto <u>S</u> peci <u>O</u> the <u>v</u> ailable d	evice device self ific device : er: n/a devices:	ected by the Fitter selected in 'Available	e devices' lis	t	Core speed gra Name filter: Show advar	ade: nced	8 I devices	r		
Target de <u>A</u> uto <u>S</u> peci <u>O</u> the <u>v</u> ailable d Na	evice o device sele ific device : er: n/a devices: me	ected by the Fitter selected in 'Available Core Voltage	e devices' lis	Total I/Os	Core sp <u>e</u> ed gra Name filter: S <u>h</u> ow advar	nced	8 devices	Emt	edded multipl	ier 9-bit
Target de <u>A</u> uto <u>S</u> peci <u>O</u> the <u>v</u> ailable d Na 10CL0161	evice device self ific device : r: n/a devices: me YF484C8G	Core Voltage	LEs	t Total I/Os 341	Core speed gra Name filter: Show advar GPIOs 341 5	nced M 5160	8 devices lemory Bits 096	Emb 112 252	edded multipl	ier 9-bit
Target de <u>A</u> uto <u>S</u> peci <u>O</u> the <u>v</u> ailable d <u>Na</u> <u>10CL016</u> <u>10CL040</u> <u>10CL055</u>	evice device selv ific device : tr: n/a devices: tre YF484C8G YF484C8G YF484C8G YF484C8G	Core Voltage 1.2V	e devices' lis LEs 15408 39600 55856	Total I/Os 341 326 322	Core sp <u>e</u> d gra Name filter: Show advar GPIOs 341 5 322 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nced M 5160 1161 2396	8 devices lemory Bits 096 1216 5160	Eml: 112 252 312	edded multipl	ier 9-bit
Target de <u>A</u> uto <u>S</u> peci <u>O</u> the <u>v</u> ailable d <u>Na</u> 10CL0161 10CL0551 10CL080)	evice device self ific device : tr: n/a devices: tre YF484C8G YF484C8G YF484C8G YF484C8G YF484C8G	Core Voltage 1.2V 1.2V	LEs 15408 39600 55856 81264	Total I/Os 341 326 322 290	Core sp <u>e</u> d gra Name filter: ☑ S <u>h</u> ow advar 341 5 326 1 322 2 290 2	mced M 5160 1161 2396 2810	8 devices lemory Bits 096 1216 5160 0880	Emb 112 252 312 488	edded multipl	ier 9-bit
Target de <u>A</u> uto <u>S</u> peci <u>O</u> the <u>v</u> ailable d <u>Na</u> <u>10CL016</u> <u>10CL040</u> <u>10CL055</u> <u>10CL080</u> <u>10CL080</u>	evice device self ific device : tr: n/a devices: me YF484C8G YF484C8G YF484C8G YF484C8G YF484C8G YF484C8G	Core Voltage 1.2V 1.2V 1.2V 1.2V 1.2V	LEs 15408 39600 55856 81264 119088	t Total I/Os 341 326 3322 290 278	Core sp <u>e</u> ed gra Name filter: ✓ S <u>h</u> ow advar S <u>h</u> ow advar 326 - 322 - 290 - 278 - 278 -	M 5160 1161 2396 2810 3981	8 devices beenory Bits 096 1216 5160 0880 1312	Emb 112 252 312 488 576	ædded multipl	ier 9-bit

Figure 1.7 Device selection

(6) As shown in Figure 1.8, select the EDA tool. Here use the EDA tool that comes with Quartus.

Tool Name <none> ▼ <none> ▼ Timing Symbol</none></none>	Format(s) <none> <none> <none></none></none></none>	Run Tool Automatically Run this tool automatically to synthesize the current design Run gate-level simulation automatically after compilation
Tool Name <none> </none> Timing Symbol	Format(s) <none> <none> <none></none></none></none>	Run Tool Automatically Run this tool automatically to synthesize the current design Run gate-level simulation automatically after compilation
<none></none>	<none> <none> <none></none></none></none>	Run this tool automatically to synthesize the current design Run gate-level simulation automatically after compilation
<none></none>	<none></none>	Run gate-level simulation automatically after compilation
Timing Symbol	<none></none>	
Symbol		•
	<none></none>	•
Signal Integrity	<none></none>	•
Boundary Scan	<none></none>	•

Figure 1.8 Selection of EDA tool

- (7) Click **Next** to go to the next interface and select **Finish** to complete the project.
- (8) Click File > New or use the shortcut key Ctrl+N to pop up the dialog box shown in Figure 1.9, create a program file (Verilog HDL File) to write code. Pay attention to the consistency of the program name and project name, and save it in the correct path (folder).

Figure 1.9 Create a new project file (LED_shifting.v)

Once the preparation is ready, start writing the program.

1.3.3.2 Program Introduction

The first step: the establishment of the main program framework (interface design)

mo	odule Led_shifting(
	input	clk,
	input	rst_n,
	output reg [7:0]	led
);		
end	dmodule	

The input signal of this experiment has 50 MHz system clock *clk* and reset signal *rst_n*. Output signal is *led*; 8 leds are defined by the multi-bit width form of *led* [7:0].

The second step: the call of IP Core, the establishment and use of PLL module

- (1) As shown in Figure 1.10, find the **ALTPLL** in the **IP catalog** option bar on the right side of the main interface.
- (2) As shown in Figure 1.11, double-click **ALTPLL** and enter the name of the PLL module in the pop-up dialog box. The name given here is *PLL1*. Note that the selection type is **Verilog** language type.
- (3) As shown in Figure 1.12, after completing the previous step, enter the detailed setting interface. *InclkO* is the input clock of the PLL, provided by the development board, should be consistent with the system clock, set to **50MHz**; PLL feedback path is set to **normal mode**. For advanced features involved, please read the reference; The output clock of the PLL compensation is *CO*; after the setting is completed, click **Next** to proceed to the next step.

Figure 1.10 IP Catalog

🕥 Save IP Variation	×
IP variation file name:	 ОК
C:/Users/Raytine/Desktop/LED_shifting/PLL1	 Canaal
IP variation file type	Cancel
Verilog	

Figure 1.11 Name PLL

Figure 1.12 PLL setting1 (input clock setting)

(4) As shown in Figure 1.13, it is the setting of PLL asynchronous reset (areset) control and capture lock (locked) status. This experiment can be selected according to the default mode in the figure.

≪ MegaWizard Plug-In Manager [page 2 of 12]	?	\times
altpll	About Document	tation
Parameter 2 PLL 3 Output 4 ED Settings Reconfiguration Clocks 4	A 5 Summary	
General/Modes Inputs/Lock Bandwidth/SS	Clock switchover	
PLL1 inck0 frequency: 50 000 MHz c0, persten Mode: Normal Cik Ratio Phi (dg) Did (%)	Able to implement the requested PLL Optional Inputs Optional Inputs Optional input to selectively enable the PLL Optional reset' input to asynchronously reset the PLL Optional reset' input to asynchronously reset the PLL Optional an infidenal input to selectively enable the phase/frequency detector	
Cyclone 10 LP	Lock Output Create 'locked' output Enable self-reset on loss lock	
	Advanced Parameters Using these parameters is recommended for advanced users only Create output file(s) using the "Advanced" PLL parameters - Configurations with output clock(s) that use cascade counters are not supported	
	Cancel < Back Next > En	nish

Figure 1.13 PLL setting2

- (5) The contents of the next three settings pages are executed by default.
- (6) As shown in Figure 1.14, it is the setting of the PLL output clock. It can output 5 different clocks clk c0~clk c4. This experiment only uses one, set clk *c0*, other defaults are not applicable. Set the output frequency to 100 MHz, the clock phase shift to 0, and the clock duty cycle to 50%.

ALTPLL				Abo	ut Docume	ental
arameter ZPLL 3Output 4EDA ettings Clocks dkc1 ckc2 ckc3 ckc4	5 Summary					
PLL1	0 - Core/External Output Clor ble to implement the requested PLL] Use this dock	ck				
k0 inclk0 frequency: 50.000 MHz c0, set Operation Mode: Normal locked Clk Ratio Ph (dg) DC (%) (%)	Enter output clock frequency:	Requeste	d Settings	MHz •	Actual Setting	js D
Cyclone 10 LP	Clock multiplication factor Clock division factor	1	0	<< Сору	2	
	Clock phase shift	0.00	\$	deg 💌	0.00	
	Clock duty cycle (%)	50.00	•		50.00	
	1. L. The distance of the	Description Primary close	dk VCO fre	quency (MHz)	Valı. 60	^
	PLL is recommended for use by advanced users only	Modulus for	M counter	r	12	~
			Per Cloc c0	k Feasibility In c1 c2 c	dicators 3 c4	

Figure 1.14 PLL setting3 (output clock setting)

- (7) Keep the EDA setting to be default.
- (8) As shown in Figure 1.15, the output file type setting selects *.bsf (used in the subsequent design of graphic symbols) files and *.v files. Others are set by default and click Finish to complete the settings.

べ MegaWizard Plug-In Manager [page 12 of 12]	1	? ×
		About Documentation
I Parameter I PLL I Output I H Settings Reconfiguration Clocks I	EDA 5 Summary	
PLL1 incik0 frequency: 50000 MHz c0, incik0 frequency: 50000 MHz locked	Turn on the files you wisi green checkmark indicate checkbox is maintained ir The MegaWizard Plug-In E: \example \ed_run\	n to generate. A gray checkmark indicates a file that is automatically generated, and a es an optional file. Click Finish to generate the selected files. The state of each subsequent MegaWizard Plug-In Manager sessions. Manager creates the selected files in the following directory:
Operation Mode: Normal	File	Description
Clk Ratio Ph (dg) DC (%)	PLL 1.V	Variation file
00 21 0.00 00.00	PLL1.ppf	PinPlanner ports PPF file
Cyclone 10 LP	PLL 1.inc	AHDL Include file
	PLL 1.cmp	VHDL component declaration file
	PLL 1.bsf	Quartus Prime symbol file
	PLL1_inst.v	Instantiation template file
	PLL1_bb.v	Verilog HDL black-box file

Figure 1.15 PLL settings 4 (Output File Type Settings)

(9) As shown in Figure 1.16, select file in the **Project Navigator** type box of the project interface (the default is the project hierarchy).

Project Navigator	Files	▼ 9 ₽ ₽ ×
Files		
PLL1.qip		

Figure 1.16 PLL1.v file setting

(10) As shown in Figure 1.17, click PLL1.v. The main window will display the contents of the PLL, find the module name and port list, copy it to the top level entity, and instantiate it.

Project Navigator 🖹 Files 🔹 🔍 📮 🗗 🗙	🔹 led_run.v* 🗵 🍄 PLL1.v 🛛
Files	🖼 🚳 📅 🚎 ோ 🖪 🗗 🏠 🖉 🛸 🖉 🛸 🗮 🧮
abo led_run.v	31 //the sole purpose of programming logic devi 32 //Intel and sold by Intel or its authorized
Y E PLL1.qip	33 //refer to the applicable agreement for furt 34
PLL1.v	<pre>35 36 // synopsys translate_off 37 `timescale 1 ps / 1 ps 38 // synopsys translate_on</pre>
	39 ⊟module PLL1 (40 areset, 41 inclko, 42 c0,
Tasks Compilation	43 [OCKed); 44
Task ⊂ ⊂	45 input areset; 46 input inclk0; 47 output c0; 48 output locked;
> 🕨 Analysis & Synthesis	49 'ifndef ALTERA_RESERVED_QIS 50 // synopsys translate_off
> Fitter (Place & Route) 🗸	51 rendif 52 tri0 areset
< >>	<

Figure 1.17 PLL1.v file

When the system is powered on, the *pll_locked* signal has a value of 0 before the PLL is locked (stable operation), *pll_locked* is pulled high after the PLL is locked, and the clock signal *sys_clk* is output normally. The phase-locked loop is instantiated as follows:

-			
	wire	sys_clk;	
	wire	pll_locked;	
	PLL1 PLL1_inst		
	(
	.areset		(1'b0),
	.inclk0		(clk),
	.c0		(sys_clk),
	.locked		(pll_locked)

(11) Sys_rst is used as the reset signal of the frequency division part, and ext_rst is used as the reset signal of the part of the running LED. Under the drive of the clock sys_clk, it is synchronously reset by the primary register.

reg sys_rst; reg ext_rst; always @ (posedge sys_clk) begin sys_rst <= !pll_locked; ext_rst <= rst_n; end

The third step: the design of the frequency divider

We use the 100 MHz clock output by PLL as the system clock. The experiment requires the blinking speed of the running light to be 1 second. The design is firstly obtained 1us by microsecond frequency division, then dividing into milliseconds to get 1ms, and finally get 1s clock through second frequency division.

(1) Microsecond frequency division

);

```
us_cnt <= 0;
us_f <= 1'b1;
end
else
us_cnt <= us_cnt + 1'b1;
end
end
```

The 100 MHz clock has a period of 10ns, and 1us requires 100 clock cycles, that is, 100 10ns. Therefore, a microsecond counter us_cnt [6:0] and a microsecond pulse signal us_f are defined. The counter is cleared at reset. On each rising edge of the clock, the counter is incremented by one. When the counter is equal to 99, the period of 1us elapses, and the microsecond pulse signal us_f is pulled high. Thus, every 1us, this module will generate a pulse signal.

(2) Millisecond frequency divider

Similarly, 1ms is equal to 1000 1us, so a millisecond counter *ms_cnt [9:0]* and a microsecond pulse signal *ms_f* are defined.

```
ms_f <= 1'b1;
end
else
ms_cnt <= ms_cnt + 1'b1;
end
end
end</pre>
```

(3) Second frequency divider

Similarly, 1s is equal to 1000 1ms, so a second counter s_{cnt} [9:0] and one second pulse signal s_f are defined. When the three counters are simultaneously full, the time passes for 1 s and the second pulse signal is issued.

```
reg
        [9:0] s_cnt;
reg
               s_f;
always @ (posedge sys_clk) begin
     if (sys_rst) begin
         s_cnt <= 0;
         s_f <= 1'b0;
     end
     else begin
         s_f <= 1'b0;
         if (ms_f) begin
               if (s_cnt == 999) begin
                   s_cnt <=0;
                   s_f <= 1'b1;
         end
         else
               s_cnt <= s_cnt + 1'b1;
         end
     end
```

end

The fourth step: the design of the shifting LED

When resetting, 8 LEDs are all on, so the output *led* is 8'h00. The LEDs need to blink one by one, so the lowest LED is lit first. At this time, the *led* value is 8'b1111_1110. When the second pulse signal arrives, the next LED is illuminated, and the value of *led* is 8'b1111_1101. It can be seen that as long as the high level of "0" is shifted to the left, it can be realized by bit splicing, that is, led <= {led[6:0], led[7]}.

always @ (posedge sys_clk)
begin
if (ext_rst)
led <= 8'hff;
else begin
if (!ext_rst)
led <= 8'h00;
else begin
if (led == 8'h00)
led <= 8'b1111_110;
else if (s_f)
led <= {led[6:0], led[7]};
end
end

1.4 Experiment Verification

1.4.1 Some Preparation Before Verification

Synthesis

Figure 1.18 Introduction to some functions

As shown in Figure 1.18, after the program is written, analysis and synthesis is required to check for errors. Click the synthesis icon to complete, or use the shortcut key **Ctrl+K**, the pin assignment is to bind each signal to the FPGA pin, the compilation is to generate the programming file for the development board and check the error again. Click the programmer icon, and follow the instructions to program the development board. Click on the synthesis icon, Quartus will automatically generate a report, as shown in Figure 1.19. The details of the report are not described here.

×	-	Compilation Report - led_run	×
Flow Summary			
< <filter>></filter>			
Flow Status	Su	iccessful - Mon Apr 15 17:20:22 2019	
Quartus Prime Version	18	3.1.0 Build 625 09/12/2018 SJ Standard Edition	
Revision Name	lec	d_run	
Top-level Entity Name	lec	d_run	
Family	Cy	rclone 10 LP	
Device	10	OCL010YE144C8G	
Timing Models	Fi	nal	
Total logic elements	74	L Contraction of the second	
Total registers	43	3	
Total pins	10)	
Total virtual pins	0		
Total memory bits	0		
Embedded Multiplier 9-bit elements	0		
Total PLLs	0		

Figure 1.19 Compilation report

Check and modify to no error before board verification. Do the pin assignment before actually programming the board.

Table	1.1	Pin	mapping
-------	-----	-----	---------

Signal Name	Network Label	FPGA Pin	Port Description
clk	CLK_50M	G21	Input clock
rst_n	PB3	Y6	Reset
led[7]	LED7	F2	LED 7
led[6]	LED6	F1	LED 6

led[5]	LED5	G5	LED 5
led[4]	LED4	H7	LED 4
led[3]	LED3	H6	LED 3
led[2]	LED2	H5	LED 2
led[1]	LED1	JG	LED 1
led[0]	LED0	J5	LED 0

Click the pin assignment icon to open the pin assignment window, as shown in Figure 1.20. Double-click the location column corresponding to each pin, directly enter the pin number, or click the drop-down button to find the corresponding pin, but the latter is relatively slow. It should be noted that the I/O standard column in Figure 1.21, the content shown is the voltage standard of each I/O port, determined by the BANK voltage in the schematics and the design requirements. In this experiment, the I/O voltage should be selected as 3.3V. Double-click the I/O standard column button, as shown in Figure 1.22, select the right voltage standard. The default voltage standard can be set in advance when selecting the chip model. Click **Device and Pin Options -> Voltage -> Default I/O standard** in Figure 1.7 to set it.

The pin assignment is complete, as shown in Figure 1.22. Then click on the compilation. After completion, program the development board.

Figure 1.20 Pin assignment window

I/O Standard	Reserved
3.3-V LVCMOS	-
1.5-V HSTL Class	<u>^</u> ا
1.8 V	
1.8-V HSTL Class	
1.8-V HSTL Class	
2.5 V	
3.0-V LVCMOS	
3.0-V LVTTL	
3.0-V PCI	
3.0-V PCI-X	
3.3-V LVCMOS	*

Figure 1.21 I/O voltage selection

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential
- clk	Input	PIN_91	6	B6_N0	PIN_91	3.3-V LVCMOS		2mA (default)		
🗳 led[7]	Output	PIN_77	5	B5_N0	PIN_77	3.3-V LVCMOS		2mA (default)	2 (default)	
🗳 led[6]	Output	PIN_76	5	B5_N0	PIN_76	3.3-V LVCMOS		2mA (default)	2 (default)	
🗳 led[5]	Output	PIN_75	5	B5_N0	PIN_75	3.3-V LVCMOS		2mA (default)	2 (default)	
led[4]	Output	PIN_74	5	B5_N0	PIN_74	3.3-V LVCMOS		2mA (default)	2 (default)	
🗳 led[3]	Output	PIN_87	5	B5_N0	PIN_87	3.3-V LVCMOS		2mA (default)	2 (default)	
💾 led[2]	Output	PIN_86	5	B5_N0	PIN_86	3.3-V LVCMOS		2mA (default)	2 (default)	
🗳 led[1]	Output	PIN_83	5	B5_N0	PIN_83	3.3-V LVCMOS		2mA (default)	2 (default)	
🕌 led[0]	Output	PIN_80	5	B5_N0	PIN_80	3.3-V LVCMOS		2mA (default)	2 (default)	
🖕 rst	Input	PIN_10	1	B1_N0	PIN_10	3.3-V LVCMOS		2mA (default)		
<new node="">></new>										

Figure 1.22 Pin assignment overview

1.4.2 Program the Board

Before programming the board, some settings should be made for the Quartus. For details, please refer to the "Intel FPGA Download Cable II User Guide" for reference. After the settings according to the instructions, click programmer icon to open the download window, as shown in Figure 1.23.

Programmer - E File Edit View	E:/kdb_shiyan/1.LED_shifti Processing <u>T</u> ools <u>W</u> in	ng/Led_shifting - L dow <u>H</u> elp	ed_shifting - [L	ed_shifting.cdf)							Search altera.com	×
📥 Hardware Setup.	No Hardware						Mode:	JTAG		•	Progress:		
Enable real-time	ISP to allow background pro	ogramming when av	ailable										
▶ [₩] Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine	Security Bit	Erase	ISP CLAMP		
Stop	output_files/Led_shifti	10CL006YE144	0009CBFC	0009CBFC									
Auto Detect													
Add File													
Change File													
Save File													
Add Device	(intel)												
1 ^ካ b Up													
I [™] Down	100100675	144											

Figure 1.23 Programmer window

After connecting the development board to the host computer, click on **Hardware Setup** and select development board, as shown in Figure 1.24.

Hardware Setup							×
Hardware Settings	JTAG Se	ettings					
Select a programming hardware setup applie	g hardwar es only to	e setup t the curre	o use when ent program	programming d mer window.	evices. T	his programming	_
Currently selected har	rdware:	MBFTDI	-Blaster v1.8	b (64) [MBUSB-	0]	-	•
Available hardware i	tems						
Hardware			Server	Port		Add Hardware	
MBFTDI-Blaster v1.	.8b (64)		Local	MBUSB-0		Remove Hardware	
						Close	

Figure 1.24 Hardwrae setup
Click **Start** to start the download, as shown in Figure 1.25, Progress shows 100% (Successful), that is, the download is completed.

Figure 1.25 Program successfully

See Figure 1.26, the LEDs is lit from low to high and the interval is one second.

Figure 1.26 Experiment result

Experiment 2 SignalTap

2.1 Experiment Objective

- (1) Continue to practice the use of the development board hardware;
- (2) Practice the use of SignalTap Logic Analyzer in Quartus;
- (3) Learn to analyze the captured signals.

2.2 Experiment Implement

- (1) Use switches to control the LED light on and off
- (2) Capture and analyze the switching signals on the development board through the use of SignalTap.

2.3 Experiment

2.3.1 Introduction of DIP Switches and SignalTap

(1) Introduction of switches

The on-board switch is 8 DIP switches, as shown in Figure 2.1. The switch is used to switch the circuit by turning the switch handle.

Figure 2.1 Switch physical picture

(2) Introduction of SignalTap

SignalTap uses embedded logic analyzers to send signal data to SignalTap for real-time analysis of internal node signals and I/O pins when the system is operating normally.

2.3.2 Hardware Design

The schematics of the switch is shown in Figure 2.2. Port 2 of the 8 switches is connected to VCC, and port 3 is connected to the FPGA. Therefore, when the switch is toggled to port 3, the switch is turned on and input to the FPGA a high level signal.

Figure 2.2 Schematics of the switches

2.3.3 Program Design

The first step: the establishment of the main program framework (interface design)

inclk,

module SW_LED(

input

input	[7:0]	sw,	
outp	ut reg [7:0]	led	
);			
endmodu	e		

The experimental input signals have a system clock *clk* with frequency of 50 MHz, an high effective 8-bit switch *sw*, and an output 8-bit *led*.

The second step: realize the switch control LED

```
wire sys_rst;
always @ (posedge inclk)
begin
if (sys_rst)
    led <= 8'hff; // All turned off
else
    led <= ~sw; // Determined by the state of the switch
end</pre>
```

When the reset signal is valid, all 8 LEDs are off. After the reset is completed, the LED light is turned on and off by the switch.

2.4 Use and Verification of SignalTap Logic Analyzer

The first step: pin assignment

Pin assignments are shown in Table 2.1. Compile when pin assignment is finished.

Signal Name	Network Label	FPGA Pin	Port Description
clk	C10_50M	G21	Input clock
SW[7]	PB7	W6	Switch 7
SW[6]	PB6	Y8	Switch 6
SW[5]	PB5	W8	Switch 5

SW[4]	PB4	V9	Switch 4
SW[3]	PB3	V10	Switch 3
SW[2]	PB2	U10	Switch 2
SW[1]	PB1	V11	Switch 1
SW[0]	PBO	U11	Switch 0
led[7]	LED7	F2	LED 7
led[6]	LED6	F1	LED 6
led[5]	LED5	G5	LED 5
led[4]	LED4	H7	LED 4
led[3]	LED3	H6	LED 3
led[2]	LED2	H5	LED 2
led[1]	LED1	J6	LED 1
led[0]	LED0	J5	LED 0

Step 2: SignalTap II startup and basic settings

Menu Tools -> SignalTap II logic Analyzer,

- (1) In Figure 2.3, set the data under Signal Configuration
- (2) Set the JTAG configuration and click on **Setup** to set the downloader.
- (3) Set the device type by clicking Scan Chain
- (4) Set up SOF Manager: set as *.SOF that is just compiled and generated before
- (5) Clock and storage depth settings are shown in Figure 2.4.

Click the position shown in Figure 2.4 to add the clock. As shown in Figure 2.5, in the Clock Settings dialog box: Filter select **SignalTap: pre-synthesis -> List**, select the desired clock signal, select *c0* in PLL1: PLL1_INST, move to the box on the right.

Other settings can be set as shown in Figure 2.2. (for advanced use of SignalTap II, please read the reference)

Signal Tap Lo	ogic Analyzer -	E:/kdb_shiyan/S\	V_LED/SW_LED	- SW_LED - [stp1	.stp]*						-	
ile <u>E</u> dit <u>V</u> iew	v <u>P</u> roject P <u>r</u> o	cessing <u>T</u> ools	<u>W</u> indow <u>H</u> elp	, ,							Search altera	.com
目 し つ (<u>段</u> 2										
nstance Manager	: 🌂 👂 💷	Ready to a	cquire						×	JTAG Chain Configuration: JTAG ready		
stance		Status	Enabled L	Es: 564	Memory: 8192	Small: 0/0	Medium: 1/46	Large: 0/0		Hardware: MBFTDI-Blaster v1.8b (64) [MB	USB-0] 🔹	Setup
🔝 auto_signa	altap_0	Not running	5	64 cells 8	B192 bits	0 blocks	1 blocks	0 blocks		Davice: @1: 10CL006(VIZ)/10CL010(VI	17)/ (0x02) -	Scan Chain
										>> SOF Manager: 👗 🕕 SW_LED/o	output_files/SW	_LED.sof
trigger: 2019/01	5/08 17:06:33 #1		Lock mode:	Allow all char	nges	•			s	ignal Configuration:		×
	Node		Data Enable	Trigger Enable	Trigger Condition	ons				n - 1 - 1		^
Type Alias	Na	me	8	8	1 Basic OR	•						
₽	sw[70]				RRRRRRR (C)R)			Ē	Data		
* · · · ·	sw[/]						Double clic	k to		Sample depth: 1 K 👻 RAM type: Auto)	-
	sw[0]			R	1		add node	es				T.
	sw[4]				1					Segmented. 2 512 sample segments		
-	sw[3]				5					Nodes Allocated: Auto O Manu	ial: 8	÷.
-	sw[2]				5					Pipeline Factor: 0		•
*	sw[1]				5	_						
4	sw[0]		\checkmark							Storage quatiner.		
										Type: Continuous		•
🎘 Data 📓	Setup								<			>
Hierarchy Display	y:	×	Data Log: 📴									×
🗹 🏲 SW_L	ED		🔝 auto_signal	tap_0								
-												

Figure 2.3 SignalTap setting interface

Signal Configuration:	×
Clock:	^ ^
Data	
Sample depth: 1 K 🔻 RAM type: Auto	-
Segmented: 2 512 sample segments	~
Nodes Allocated:	* *
Pipeline Factor: 0	-
Storage qualifier:	•

Figure 2.4 Clock signal and the sample depth

lamed: *						~	List
Options							
Filter: SignalTap II: pr	e-synthesis						 Customize
Look in: SW_LED				~	🗹 Include sub	entities 🖂	Hierarchy view
Aatching Nodes:				Nodes For	und:		
Namo	Assignments	A 9	1	Noucoroc	Namo		Assignments
in a n	Assignments				maille		Assignments
inclk	PIN_B11						
led[0]~reg0	Unassigned						
led[1]~reg0	Unassigned						
led[2]~reg0	Unassigned						
led[3]~reg0	Unassigned						
led[4]~reg0	Unassigned						
led[5]~reg0	Unassigned		>				
led[6]~reg0	Unassigned		>>				
led[7]~reg0	Unassigned		<				
sys_rst	Unassigned						
Y PLL1:PLL1_INST			~~				
 areset 	Unassigned	_					
to 10	Unassigned						
Inclk0	Unassigned						
 tocked 	Unassigned						
 attpil:aomponent 							
2 👕 led	Unassigned						
> 📑 SW	Unassigned	\sim		<			3

Figure 2.5 Clock signal selection dialogue

Step 3: Add observation signal

🟸 Node Fi	inder						×
Named:	*					~ Li	st
Options							
Filter:	Pins: all					• c	ustomize
Look in:	SW_LED		~	🗹	Include subentit	ties 🗹 Hie	rarchy view
Matching	Nodes:	+: =:		Nodes Fo	und:		
	Name	Assignments	¢		Name	Ass	ignments
SW_LED				🏲 sw		Unassi	gned
inin	nclk	PIN_91	>				
> 🗃 le	ed	Unassigned	>>				
	w	onassigned	<				
			<<				
<		>	4	<			>
						Insert	Close

Figure 2.6 Adding interface for the observe signals

As shown in Figure 2.3, double-click the blank to add the observation signal. Adding interface is shown in Figure 2.6. Select the signal you want to observe on the left side, add it to the right side, click **Insert**. Save it and recompile.

Step 4: Settings of observe signals

For the signal to be observed, whether it is a rising edge trigger, a falling edge trigger, or not care, etc., need to be manually adjusted, as shown in Figure 2.7.

trigge	er: 201	9/05/08 17:06:33 #1	Lock mode:	💕 Allow all chan	ges	-
		Node	Data Enable	Trigger Enable	Trigger Conditions	
Туре	Alias	Name	8	8	1 🗹 Basic OR 🛛 🔻	
-		⊑ sw[70]		\checkmark	RRRRRRRRb (OR)	
*		sw[7]	<u>✓</u>	✓	5	
*		sw[6]		\checkmark	5	AND / OR
-		sw[5]	\checkmark	\checkmark	5	AND
*		sw[4]			5	OR
-		sw[3]				NAND
-		sw[2]			<u> </u>	NOR
-		sw[1]				NOR
-		sw[0]	\checkmark	\checkmark	<u> </u>	XOR
						XNOR
						TRUE
						FALSE
						Compare
						Don't Care
					-	0 Low
					-	Falling Edge
					-	🗸 Rising Edge
					-	1 High
河 р	ata	Setup				X Either Edge
	hu Die		× 🗆			Insert Value

Figure 2.7 Trigger signal setting

Step 5: Observe the results

As shown in Figure 2.7, click **Run Analysis** to observe the output of SignalTap.

After the switch *sw*[4] is turned on, its signal is high, and the corresponding LED will be lit. Modify the Trigger condition, test the output results under different Trigger conditions, analyze and summarize.

The experimental phenomenon is shown in Figure 2.9. When the switches *sw5* and *sw1* are on, the corresponding LED5 and LED1 are illuminated, and the other LEDs remain off.

Figure 2.9 Experiment result

Experiment 3 Segment Display

3.1 Experiment Objective

- (1) Review experiment 1, proficient in PLL configuration, frequency division design, and project verification;
- (2) Learn the BCD code counter;
- (3) Digital display decoding design;
- (4) Learn to program the project into the serial FLASH of the development board;

3.2 Experiment Implement

- (1) The segment display has two lower digits to display seconds, the middle two digits to display minutes, and the highest two digits to display hours.
- (2) The decimal point remains off and will not be considered for the time being.

3.3 Experiment

3.3.1 Introduction to the Segment Display

One type of segment display is a semiconductor light-emitting device. The segment display can be divided into a seven-segment display and an eight-segment display. The difference is that the eight-segment display has one more unit for displaying the decimal point, the basic unit is a light-emitting diode. The on-board segment display is a six-in-one eight-segment display as shown in Figure 3.1, and its structure is shown in Figure 3.2.

Figure 3.1 Segment display physical picture

Figure 3.2 Single segment display structure

Common anode segment displays are used here. That is, the anodes of the LEDs are connected. See Figure 3.3. Therefore, the FPGA is required to control the cathode of the LED to be low level, illuminate the diode, and display the corresponding information. The six-digit common anode eight-segment display refers to the signal that controls which one is lit, which is called the bit selection signal. The content displayed by each digital segment is called the segment selection signal. The corresponding truth table is shown in Table 3.1.

Figure 3.3 Schematics of common anode LEDs

Signal Segment	DP	G	F	Е	D	С	В	Α
•	0	1	1	1	1	1	1	1
0	1	1	0	0	0	0	0	0
1	1	1	1	1	1	0	0	1
2	1	0	1	0	0	1	0	0
3	1	0	1	1	0	0	0	0
4	1	0	0	1	1	0	0	1

Table 3.1 8-segment display truth table

5	1	0	0	1	0	0	1	0
6	1	0	0	0	0	0	1	0
7	1	1	1	1	1	0	0	0
8	1	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	0
A	1	0	0	0	1	0	0	0
В	1	0	0	0	0	0	1	1
С	1	1	0	0	0	1	1	0
D	1	0	1	0	0	0	0	1
E	1	0	0	0	0	1	1	0
F	1	0	0	0	1	1	1	0

There are two ways to display the segment display, static display and dynamic display.

Static display: Each display segment is connected with an 8-bit data line to control and maintain the displayed glyph until the next segment selection signal arrives. The advantage is that the driver is simple, and the disadvantage is that it takes up too much I/O resources.

Dynamic display: Parallel the segment selection lines of all segment display, and the digit selection line controls which digit is valid and lights up. Through the afterglow effect of the LED and the persistence effect of the human eye, the segment display appears to be continuously lit at a certain frequency. The advantage is to save I / O resources, the disadvantage is that the driver is more complicated, the brightness is not static display high.

In this experiment, the digital tube was driven by dynamic scanning.

3.3.2 Hardware Design

The schematics of the segment display is shown in Figure 3.4. The anode is connected to VCC through the P-channel field effect transistor. Therefore, when the bit selection signal SEG_3V3_D[0:5] is low level 0, the FET is turned on, the anode of the segment display is high level; the cathode (segment selection signal) SEG_PA, SEG_PB, SEG_PC, SEG_PD, SEG_PE, SEG_PF, SEG_PG, SEG_DPZ are directly connected to the FPGA and directly controlled by the FPGA. Therefore, when the bit selection signal is 0, and the segment selection signal is also 0, the segment display is lit.

Figure 3.4 Schematics of the segment display

3.3.3 Program Design

3.3.3.1 Introduction of the Program

The first step: the establishment of the main program framework (interface design)

module BCD_c	module BCD_counter (
input		clk,			
input		rst_n,			
output	[7:0]	seven_seg,			
output	[5:0]	scan			
);					
endmodule					

The input signal has a clock and a reset signal, and the output signals are a segment selection signal *seven_seg* and a new signal *scan*.

Step 2: System Control Module

In the first sub-module (system control module), the input clock is the system 50 MHz clock, and a 100MHz is output through the phase-locked loop as the working clock of the other sub-modules. The phase-locked loop lock signal is inverted as the system reset signal. The button is reset to be used as an external hardware reset signal.

The third step: the frequency division module

Referring to Experiment 1, a millisecond pulse signal and a second pulse signal are output as input signals of the segment display driving module.

The fourth step: segment display driver module

(1) Counting section

The counting part is similar to the frequency dividing module. It is timed by the second pulse signal for 60 seconds, 60 minutes, 24 hours, and when the time reaches 23 hours, 59 minutes and 59 seconds, the counters are all cleared, which is equivalent to one day.

```
[3:0]
reg
                count_sel;
       [2:0] scan_state;
reg
always @ (posedge clk)
begin
    if (!rst_n) begin
         scan <= 6'b111_111;
         count_sel <= 4'd0;
         scan_state <= 0;</pre>
    end
    else case (scan_state)
         0 :
         begin
             scan
                   <= 6'b111_110;
             count_sel<= counta;</pre>
             if (ms_f)
                  scan_state <= 1;</pre>
         end
         1 :
         begin
                   <= 6'b111_101;
             scan
             count_sel<= countb;</pre>
             if (ms_f)
                  scan_state <= 2;</pre>
         end
         2 :
         begin
             scan
                     <= 6'b111_011;
```

```
count_sel<= countc;</pre>
                if (ms_f)
                     scan_state <= 3;</pre>
          end
          3 :
          begin
                          <= 6'b110_111;
               scan
               count_sel<= countd;</pre>
               if (ms_f)
                     scan_state <= 4;</pre>
          end
          4
             :
          begin
               scan
                          <= 6'b101_111;
               count_sel<= counte;</pre>
               if (ms_f)
                     scan_state <= 5;</pre>
          end
          5
             :
          begin
               scan <= 6'b011_111;
               count_sel<= countf;</pre>
               if (ms_f)
                     scan_state <= 0;</pre>
          end
          default : scan_state <= 0;</pre>
     endcase
end
```

The dynamic scanning of the segment display is realized by the state machine. A total of six

segment display require six states. The state machine *scan_state[2:0]* is defined, and the corresponding content *count_sel* is displayed in different states. At reset, all six segment display are extinguished and jump to the 0 state. The segment display is dynamically scanned in 1 millisecond time driven by a millisecond pulse:

In the 0 state, the zeroth segment display is lit, and the ones digit of the second is displayed;

In the 1 state, the first segment display is lit, and the tens digit of the second is displayed;

In the 2 state, the second segment display is lit, and the ones digit of the minute is displayed;

In the 3 state, the third segment display is lit, and the tens digit of the minute is displayed;

In the 4 state, the fourth segment display is lit, and the ones digit of the hour is displayed;

In the 5 state, the fifth segment display is lit, and the tens digit of the hour is displayed;

Part 5: segment display segment code section

```
always @ (*)
begin
    case (count_sel)
         0
                  seven_seg_r <= 7'b100_0000;
             :
                   seven_seg_r <= 7'b111_1001;</pre>
         1
              :
                   seven_seg_r <= 7'b010_0100;</pre>
         2
              :
         3
              :
                   seven_seg_r <= 7'b011_0000;
         4
                   seven seg r <= 7'b001 1001;
              :
         5
                   seven_seg_r <= 7'b001_0010;
              :
         6
              :
                   seven_seg_r <= 7'b000_0010;
                   seven_seg_r <= 7'b111_1000;</pre>
         7
              :
                   seven_seg_r <= 7'b000_0000;
         8
              :
         9
                   seven_seg_r <= 7'b001_0000;
              :
         default : seven_seg_r <= 7'b100_0000;
    endcase
end
```

Referring to Table 3.1, the characters to be displayed are associated with the segment code, the decimal point is set high, and then the final segment selection signal output is composed in a spliced form.

3.4 Flash Application and Experimental Verification

The first step: pin assignment

Pin assignments are shown in Table 3.2.

Signal Name	Network Label	FPGA Pin	Port Description
clk	CLK_50M	G21	Input clock
rst_n	PB3	Y6	reset
scan[0]	SEG_3V3_D0	F14	Bit selection 0
scan[1]	SEG_3V3_D1	D19	Bit selection 1
scan[2]	SEG_3V3_D2	E15	Bit selection 2
scan[3]	SEG_3V3_D2	E13	Bit selection 3
scan[4]	SEG_3V3_D4	F11	Bit selection 4
scan[5]	SEG_3V3_D5	E12	Bit selection 5
seven_seg[0]	SEG_PA	B15	Segment a
seven_seg[1]	SEG_PB	E14	Segment b
seven_seg[2]	SEG_PC	D15	Segment c
seven_seg[3]	SEG_PD	C15	Segment d
seven_seg[4]	SEG_PE	F13	Segment e
seven_seg[5]	SEG_PF	E11	Segment f
seven_seg[6]	SEG_PG	B16	Segment g
seven_seg[7]	SEG_DP	A16	Segment h

The second step: compilation

The third step: solidify the program to Flash

Onboard Flash (N25Q128A) is a serial Flash chip that can store 128Mbit of content, which is more than enough for the engineering process in the learning process. The schematics of the Flash is shown in Figure 3.7.

Figure 3.7 Schematics of FLASH

The function of Flash is to save the program on the development board. After the power is off, the program will not disappear. The next time the development board is powered on, it can be used directly. It is more practical in the actual learning life. Driven by the SPI_CLK clock, the FPGA Flash is programmed through the SPI_ASDO line. After power-on, the FPGA re-reads the program to the FPGA through SPI_XDATA for testing.

The specific configuration process of Flash is as follows:

- (1) Menu File -> Convert programming files, as shown in Figure 3.8;
- (2) Option settings
 - 1) Select JTAG Indirect configuration File(*.Jic)
 - 2) Configuration Device: EPCQ 128A (Compatible with development board N25Q128A)
 - 3) Mode: Active serial

Convert Programming File <u>File T</u> ools <u>W</u> indow	- E:/kdb_shiyan/BCD_counter/BCD	D_counter - BCD_counter		[– 🗆 Search altera.com	
Specify the input files to convert . You can also import input file info future use. Conversion setup files	and the type of programming file to ormation from other files and save th	generate. ne conversion setup information create	d here for			
	Open Conversion Setup Data.	•	Save Conversion	n Setup		
Output programming file						
Programming file type:	JTAG Indirect Configuration File	e (.jic)				•
Options/Boot info	Configuration device:	EPCQ128A	▼ Mode:	Active Serial		-
File name:	output_files/output_file.jic					
Advanced	Remote/Local update difference	file:	NONE			~
	🗹 Create Memory Map File (Gen	erate output_file.map)				
	Create CvP files (Generate out	tput_file.periph.jic and output_file.core	.rbf)			
	Create config data RPD (Gene	rate output_file_auto.rpd)				
Input files to convert						
File/Data area	Properties	Start Address			Add H	lex Data
Flash Loader					Add S	of Page
SOF Data	Page_0	<auto></auto>			Add	File
					Ren	nove
						Jp
					D	
					Deres	portion
					Prop	erues
				Generate	Close	Help

Figure 3.8 *.jic file setting

(3) Click the Advanced button and set it as shown in Figure 3.9.

🛅 Advanced Options	×
Disable EPCS/EPCQ ID check	
Disable AS mode CONF_DONE error ch	eck
Program length count adjustment:	0
Post-chain bitstream pad bytes:	default
Post-device bitstream pad bytes:	default
Bitslice padding value:	1 💌
QSPI Flash single IO mode dummy clock:	Unchangeable
QSPI Flash quad IO mode dummy clock:	Unchangeable
	OK Cancel

Figure 3.9 Advanced option setting

(4) Add a conversion file, as shown in Figure 3.10.

Input files to convert			
File/Data area	Properties	Start Address	Add Hex Data
Flash Loader			Add Sof Page
Y SOF Data P	Page_0	<auto></auto>	
BCD_counter.sof 1	IOCL010YE144	🖻 Select Input File 🛛 🕹	Add File
			Remove
		Look in: E:\kdb_shiyan\BCD_counter\output_files	Up
		My Computer BCD_counter.sof	Down
		a Raytine	200
			Properties
		File name: BCD_counter.sof Open	
		Files of type: SRAM Object Files (*.sof)	негр

Figure 3.10 Add conversion file

(5) Add a device, as shown in Figure 3.11.

Conversion setup files		Device family		Device name			
	Open Conversion Setup Da	APEX20K	^	10CL006Y		^ Nev	ł
Output programming file		Arria GX		10CL010Y		Impo	irt
Programming file type:	JTAG Indirect Configuratio	Arria II GX		10CL010Z 10CL016Y		Expo	irt
Options/Boot info	Configuration device:	Arria V		10CL016Z		Edit	t
File name:	output_files/BCD_counter.	Cyclone		10CL025Y		Rem	ove
Advanced	Remote/Local update differ	Cyclone 10 LP		10CL040Y		Unche	ck All
	Create Memory Map File	Cyclone III		10CL055Y			
	Create config data RPD (Cyclone IV E		10CL080Y			
nput files to convert		Cyclone IV GX	~	10CL080Z		~	
File/Data area	a Prope	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1001 1007			
Flash Loader					ОК	Ca	incel
Y SOF Data	Page_0	<auto></auto>					
BCD_counter.sof	10CL040YF484					Ac	Jd Device
							Remove
							Up
							Down
						F	roperties

Figure 3.11 Add devices

- (6) Click **Generate** to generate the *BCD_counter.jic* file
- (7) Consistent with previous program verification operations, select the correct file (*.jic) to program the development board

The fourth step: power up verification

As shown in Figure 3.12, after repowered on, the FPGA automatically reads the program in Flash into the FPGA and runs it.

Figure 3.12 Experiment result

Experiment 4 Block/SCH

4.1 Experiment Objective

- (1) Review building new FPGA projects in Quartus, device selection, PLL creation, PLL frequency setting, Verilog's tree hierarchy design, and the use of SignalTap II
- (2) Master the design method of graphics from top to bottom
- (3) Combined with the BCD_counter project to achieve the display of the digital clock
- (4) Observe the experimental results

4.2 Experiment Implement

Use schematics design to build the project.

4.3 Experiment

This experiment is mainly to master another design method. The other design contents are basically the same as the experiment 3 and will not be introduced in detail. The modular design method is introduced below.

(1) New project: File -> New Project Wizard...

Project name: block_counter

Select device (10CL040YF484C8G)

(2) Create new file; File -> New, select Block Diagram/Schematic File. See Figure 4.1.

New			>
New Quartus Prime Project			^
✓ Design Files			
AHDL File			
Block Diagram/Schematic File			
EDIF File			
Qsys System File			
State Machine File			
SystemVerilog HDL File			
Tcl Script File			
Verilog HDL File			
VHDL File			
 Memory Files 			
Hexadecimal (Intel-Format) File			
Memory Initialization File			
 Verification/Debugging Files 			
In-System Sources and Probes File			
Logic Analyzer Interface File			
SignalTap II Logic Analyzer File			
University Program VWF			
✓ Other Files			
AHDL Include File			
Block Symbol File			
Chain Description File			~
	ОК	Cancel	Help

Figure 4.1 New file

- (3) See Figure 4.2, the middle part is the graphic design area, which can be used for Block/SCH design.
 - 1) Save the file as *block_counter.bdf*
 - 2) Double-click the blank space in the graphic design area to add a symbol

Quartus Prime Lite Edition - D:/FPGA_learning_prject/f	FII-PRA040/block_design_debouncing/block_deboucing - block_d	leboucing – 🗆 X
File Edit View Project Assignments Processing		Search altera.com
block_deboucing	- < < < < < < < < < < < < < < < < < < <	
Project Navigator 🔥 Hierarchy 🔹 🤉 🖬 🛎	block_deboucing.bdf	IP Catalog
Cyclone 10 LP: 10CL040YF484C8G Cyclone 10 LP: 10CL040YF484C8G Dock_deboucing Dock_deboucing Tasks Compilation Task Compile Design Analysis & Synthesis Dock_deboucing Dock_de	Double-click to design the symbol	
	×	+ Add
All All All Image: Constraint of the second	😽 Find 🚳 Find Next	>

Figure 4.2 Graph design interface

(4) Graphic editing

Double-click on the graphic design area to select the appropriate library and device in the libraries

Figure 4.3 Input symbol

- (5) Add input, output, and modify their names
- (6) Add a custom symbol
 - 1) Create a new block/sch file and save it as PLL_sys.bdf
 - 2) Add PLL IP, refer to experiment 1
 - 3) Select the generated file to include the PLL1.bsf file
 - 4) Double-click in the blank area of the *PLL_sys.bdf* file to select the PLL1 symbol just generated and add it to the file, as shown in Figure 4.4.

Figure 4.4 Invoke the symbols generated in the IP catalog in the graphical editing interface

5) Continue to add other symbols, input, output, dff, GND, etc. and connect them, as shown in Figure 4.5.

Figure 4.5 Connect the device

- (7) Recreate the newly created file symbol for graphic editing to use in subsequent design
 - 1) File -> Create/Update -> Create Symbol file for Current File. See Figure 4.6.
 - 2) Generate PLL_sys.bsf

	New	Ctrl+N	block_design	_debouncing * 🏒	° 🎸 🎸 🌚 🕨	* *	🔶 🛇 🛦 🌺 📬
	Close	Ctrl+F4	Q	>	Verilog1.v		0 🐔
A 14	New Project Wizard Open Project Save Project Close Project	1Ctrl+J		7 1 9 1	A D 📽 🗖 '	ר י ר	1.1800
•	Save Ctrl+S Save As_ Save All Ctrl+Shift+S File Properties_						
	Create / Update	,	Create HI	L Design File from C	urrent File_	10000	
	Export Convert Programm	ing Files	Create Sy Create Al	mbol Files for Curre IDL Include Files for	nt File Current File		PLL [.]
	Page Setup Print Preview		Create Ve Create VF	Create Verilog Instantiation Template Files for Current File Create VHDL Component Declaration Files for Current File Create Design File from Selected Block.		piko	
1	Pontes	Cuttr	Update D	e Design File from Selected Block		eset	Operation Mode: Norm
	Recent Projects		Create Signal Tap File from Design Instance(s) Create JAM, JBC, SVF, or ISC File				Clk Ratic Ph (dg DC
-	Exit	Alt+F4	Create/U	odate IPS File ard-Level Boundary	-Scan File_		
Tasks Compilation		Compilation	-	and the second second		IS!	

Figure 4.6 Creating a symbol file for the current file (symbol file *.bsf)

- (8) Create a frequency division module
 - Create a new verilog file *div_us* for the frequency divider (Refer project files for the code)
 - 2) The PLL output clock is used as its own input clock, and the 100 MHz clock is divided into 1 MHz clocks.
 - 3) Repeat (7) to create *div_us.bsf*
 - 4) Create a new 1000 frequency division verilog file: *div_1000f.v*

- 5) Create *div_1000f.bsf* symbol
- (9) Create the output pulse us, ms, second module, as shown in Figure 4.7. Refer the specific implementation to the reference code and the frequency division design of the experiment 1 and 3
 - 1) Create a new block/sch file *block_div* and add the designed graphic symbol file to *block_div.bdf*

2) Repeat (7) to create the *block_div.bsf* symbol

Figure 4.7 us, ms, second pulse of block/sch design

- (10) Create a new verilog file bcd_counter.v, design the hour and minute counter, and create the bsf symbol. Refer to previous experiments and implement part of the frequency division using block_div in (9).
- (11) Combine each *.*bsf* and complete the design of the digital clock (*block_counter.bdf*), as shown in Figure 4.8.

Figure 4.8 Digital clock for BDF design

4.4 Experiment Verification

Pin assignment, compilation, and program verification are consistent with Experiment 3. For reference, see Experiment 3, which is skipped here.

Experiment 5 Button Debounce

5.1 Experiment Objective

- (1) Review the design process of the shifting LED
- (2) Learn button debounce principle and adaptive programming
- (3) Study the connection and use of the Fii-PRA040 button hardware circuit
- (4) Comprehensive application button debounce and other conforming programming

5.2 Experiment Implement

- (1) Control the movement of the lit LED by pressing the button
- (2) Each time the button is pressed, the lit LED moves one bit.
- (3) When the left shift button is pressed, the lit LED moves to the left, presses the right button, and the lit LED moves to the right.

5.3 Experiment

5.3.1 Introduction to Button and Debounce Principle

(1) Introduction to button

The on-board button are common push buttons, which are valid when pressed, and automatically pops up when released. A total of eight, respectively, PB1 (MENU), PB2 (UP), PB3 (RETURN), PB4 (LEFT), PB5 (OK), PB6 (RIGHT), PB7 (DOWN) and a hardware reset button (RESET). As shown in Figure 5.1.

Figure 5.1 Button physical picture

(2) Introduction to button debounce

As long as mechanical buttons are used, instability should be considered. Usually, the switches used for the buttons are mechanical elastic switches. When the mechanical contacts are opened and closed, due to the elastic action of the mechanical contacts, a push button switch does not immediately turn on when closed, nor is it off when disconnected. Instead, there is some bouncing when connecting and disconnecting. See Fig 5. 2.

The length of the button's stable closing time is determined by the operator. It usually takes more than 100ms. If pressing it quickly, it will reach 40-50ms. It is difficult to make it even shorter. The bouncing time is determined by the mechanical characteristics of the button. It is usually between a few milliseconds and tens of milliseconds. To ensure that the program responds to the button's every on and off, it must be debounced. When the change of the button state is detected, it should not be immediately responding to the action, but waiting for the closure or the disconnection to be stabilized before processing. Button debounce can be divided into hardware debounce and software debounce.

Fig 5. 2 Button bounce principle

In most of cases, software or programs are used to achieve debounce. The simplest debounce principle is to wait for a delay time of about 10ms after detecting the change of the button state, and then perform the button state detection again after the bounce

disappears. If the state is the same as the previous state just detected, the button can be confirmed. The action has been stabilized. This type of detection is widely used in traditional software design. However, as the number of button usage increases, or the buttons of different qualities will react differently. If the delay is too short, the bounce cannot be filtered out. When the delay is too long, it affects the sensitivity of the button.

5.3.2 Hardware Design

The schematics is shown in Figure 5.3. One side of the button (P1, P2) is connected to GND, and the other side (P3, P4) is connected to the FPGA. At the same time, VCC is connected through a 10 kohm resistor. In the normal state, the button is left floating, thus the potential of the button P3 is 1, so the input value of the button to the FPGA is 1; when the button is pressed, the buttons are turned on both sides, and the potential of the button P3 is 0, so the input value of the button to the FPGA is 0. The onboard switch is active low.

Figure 5.3 Schematics of the buttons

5.3.3 Program Design

5.3.3.1 Top Level Design

Figure 5.4 Top level design

5.3.3.2 Introduction to the program

Refer to the previous experiments for the frequency division module and the LED display module. Here, a new part of the button debounce module is introduced. This chapter introduces an adaptive button debounce method: starts timing when a change in the state of the button is detected. If the state changes within 10ms, the button bouncing exists. It returns to the initial state, clears the delay counter, and re-detects the button state until the delay counter counts to 10ms. The same debounce method is used for pressing and releasing the button. The flow chart is shown in Fig 5. 5.Case 0 and 1 debounce the button press state. Case 2 and 3 debounce the button release state. After finishing the whole debounce procedure, the program outputs a synchronized clock pulse.

module pb_ve (
input	sys_clk,
input	sys_rst,

```
input
                             ms_f,
    input
                             keyin,
    output
                             keyout
);
                             keyin_r;
    reg
    reg
                             keyout_r;
                  [1:0]
                             ve_key_st;
    reg
                   [3:0]
                            ve_key_count;
    reg
always @ (posedge sys_clk)
begin
    keyin_r <= keyin;</pre>
end
always @ (posedge sys_clk)
begin
    if (sys_rst) begin
         keyout_r
                       <= 1'b0;
         ve_key_count <= 0;</pre>
         ve_key_st <= 0;
    end
    else case (ve_key_st)
         0 :
         begin
              keyout_r <= 1'b0;</pre>
              ve_key_count <= 0;</pre>
              if (!keyin_r)
                   ve_key_st <= 1;
         end
         1 :
```

```
begin
     if (keyin_r)
          ve_key_st <= 0;
     else begin
          if (ve_key_count == 10)
               ve_key_st <= 2;
          else if (ms_f)
               ve_key_count <= ve_key_count + 1'b1;</pre>
     end
end
2
   :
begin
     ve_key_count <= 0;</pre>
     if (keyin_r)
          ve_key_st <= 3;</pre>
end
3 :
begin
     if (!keyin_r)
          ve_key_st <= 2;
     else begin
          if (ve_key_count == 10) begin
               ve_key_st
                           <= 0;
               keyout_r <= 1'b1;</pre>
          end
          else if (ms_f)
               ve_key_count <= ve_key_count + 1'b1;</pre>
     end
```


Figure 5.5 Button debounce flow chart

5.4 Experiment Verification

The first step: pin assignment

Table 5.1 Pin mapping

Signal Name	Network Label	FPGA Pin	Port Description
left	PB44	AB4	Left shift signal
right	PB6	AA4	Right shift signal

clk	CLK_50M	G21	Input clock
rst_n	PB3	Y6	Reset
led[7]	LED7	F2	LED 7
led[6]	LED6	F1	LED 6
led[5]	LED5	G5	LED 5
led[4]	LED4	H7	LED 4
led[3]	LED3	H6	LED 3
led[2]	LED2	H5	LED 2
led[1]	LED1	JG	LED 1
led[0]	LED0	J5	LED 0

The second step: program the development board

After the pin assignment is completed, the compilation is performed, and the programmer is verified after passing. The experimental phenomenon is shown in Figures below.

All LEDs are lit after successfully programmed. See Figure 5.6.

Figure 5.6 Experiment result (reset)

When the right shift button is pressed, the highest LED lights up. See Figure 5.7.

Figure 5.7 Experiment result (one right shift)

Press the right shift button again and the LED will move one bit to the right. See Figure 5.8.

Figure 5.8 Experiment result (another right shift)

Experiment 6 Use of Multipliers and ModelSim

6.1 Experiment Objective

- (1) Learn to use multiplier
- (2) Use ModelSim simulation to design output

6.2 Experiment Implement

- (1) 8x8 multiplier, the first input value is an 8-bit switch, and the second input value is the output of an 8-bit counter.
- (2) Observe the output in ModelSim
- (3) Observe the calculation results with a four-digit segment display

6.3 Experiment

Since the simulation tools and the new IP core are used, there is no introduction or design part of hardware.

6.3.1 Introduction of Program

ModelSim is an HDL language simulation software. Programs can be simulated to achieve inspection and error correction. ModelSim experiment, different from the previous experiment, when building the project, the simulation tool to be used needs to be added in the EDA tool selection window. See Figure 6.1.

EDA tools:							
Tool Type	Tool Name	Format(s)		Run Tool Automatically			
Design Entry/S.	. <none></none>	<none></none>	Y	Run this tool automatically to synthesize the current design			
Simulation	ModelSim-Altera 🔻	Verilog HDL	•	Run gate-level simulation automatically after compilation			
Board-Level	Timing	<none></none>	•				
	Symbol	<none></none>	•				
	Signal Integrity	<none></none>	•				
	Boundary Scan	<none></none>	•				

Figure 6.1 EDA tool setting

Only one counter, one PLL and one multiplier are used in the program. Only the multiplier is introduced here.

The first step: the establishment of the main program framework

module mult	:_sim (
input		inclk,
input		rst,
input	[7:0]	SW,
output	[15:0]	mult_res,
output	reg [7:0]	count
);		

The value of the switch is used as the first input of the multiplier, the value of the counter is the second input, and the result of the calculation is output.

Step 2: the multiplier IP core setting steps are as follows:

After adding the LPM_MULT IP (IP Catalog -> Library -> Basic Functions -> Arithmetic
 -> LPM_MULT) and saving the path, the setting window of the multiplier is popped up, as shown in Figure 6.2, and the two input data is set to eight bits as required.

🔨 MegaWizard Plug-In Manager [page 1 of 5]	? ×
DPM_MULT		About Documentation
1 Parameter Settings 2 EDA 3 Summar	Y	
General General2 Pipelin	Currently selected device family: Currently selected device family: Multiplier configuration Multiply 'dataa' input by 'datab' input Multiply 'dataa' input by itself (squaring operation) How wide should the 'dataa' input be? How wide should the 'datab' input be? How wide should the 'datab' input be? Multiply 'dataa' input by itself (squaring operation) Multiply 'dataa' input by itself (squaring operation) Mu	Cydone 10 LP
Resource Usage	Cancel < Bac	ck Next > Finish

Figure 6.2 mult setting 1

(2) Select the multiplication type to be **Unsigned**. See Figure 6.3.

× MegaWizard Plug-In Manage	er [page 2 of 5]		?	×
🍓 LPM_MULT	[About	<u>D</u> ocume	entation
Parameter 2 EDA 3 Sun Settings General General2 Pipe	lining			
Ipm_mult8x8 dataa[7.0] datab[7.0] Unsigned multiplication	Datab Input Does the 'datab' input bus have a constant value? No Yes,the value is Multiplication Type Which type of multiplication do you want? Unsigned Signed Implementation Which multiplier implementation should be used? Use the default implementation Use the dedicated multiplier circuitry (Not available for Use logic elements 	r all famil	ies)	
Resource Usage 1 dsp_9bit	Cancel < ga	ack Ne	ext >	Einish

Figure 6.3 mult setting 2

- (3) Select the pipeline to speed up the operation, as shown in Figure 6.4.
- (4) Select others to be default

🔨 MegaWizard Plug-In Manage	er [page 3 of 5]	?	×
2 LPM_MULT	About	Docume	ntation
Parameter Settings General General General	mary		
Lipm_mult8x8 dataa[7.0] datab[7.0] datab[7.0] datab[7.0]	Pipelining Do you want to pipeline the function? No Pes, I want output latency of 1 clock cycles Create an 'actr' asynchronous clear port Create a 'clken' clock enable clock Optimization What type of optimization do you want? Default Speed Area		
Resource Usage	Cancel Sack	lext >	Einish

Figure 6.4 mult setting 3

8x8 multiplier instantiation:

reg	sys_clk;	
mult_8x8 mu	ult_8x8_inst (
.clock	(sys_clk),	
.dataa	(sw),	
.datab	(count),	
.result	(mult_res)	
);		

6.4 Use of ModelSim and the Experiment Verification

Here, use ModelSim to simulate verifying the experiment.

Method 1: Simulation based on waveform input

(1) Click the menu bar **Tools -> Options**, as shown in Figure 6.5, click **OK**.

itegory:							
' General	EDA Tool Options						
EDA Tool Options	Specify the directory that contains the tool executable for each third-party EDA tool:						
Fonts Headers & Footers Setting	EDA Tool	Directory Containing Tool Executable					
✓ Internet Connectivity	Precision Synthesis						
Notifications	Synplify						
✓ IP Settings	Synplify Pro						
IP Catalog Search Local	Active-HDL						
License Setup	Riviera-PRO						
Preferred Text Editor	ModelSim						
Processing Tooltin Settings	QuestaSim						
' Messages	ModelSim-Altera	C:\intelFPGA_lite\18.0\modelsim_ase\win32aloem					
 Messages Colors Fonts Text Editor Colors Fonts Autocomplete Text 	Use NativeLink with	h a Synplify/Synplify Pro node-locked license					

Figure 6.5 Set Modelsim-Altera path

(2) Tool -> Run Simulation Tool -> RTL Simulation. See Figure 6.6.

Figure 6.6 ModelSim interface

- (3) Set ModelSim
 - 1) Simulate -> Start Simulation
 - 2) In the popup window, add libraries under Libraries tag. See Figure 6.7.

Start Simulation	>
Design VHDL Verilog Libraries SDF Others	4
C:/intelFPGA_lite/18.0/modelsim_ase/altera/verilog/220model C:/intelFPGA_lite/18.0/modelsim_ase/altera/verilog/altera C:/intelFPGA_lite/18.0/modelsim_ase/altera/verilog/altera_mf	Add Modify Delete
- Search Libraries First (-Lf)	Add Modify Delete
	OK Cance

Figure 6.7 Add simulation libraries

3) Under **Design** tag, choose simulation project *mult_sim* and click **OK**. See Figure 6.8.

Name	Type	Path	
	Library	rtl_work	
-M lpm_mult8x8	Module	D:/FPGA_learning_prject/FII-PRA040/mult_sim/lp	m_mult8x8.v
- M] mult_sim	Module	D:/FPGA_learning_prject/FII-PRA040/mult_sim/m	ult_sim.v
-M PLL 1	Module	D:/FPGA_learning_prject/FII-PRA040/mult_sim/PL	L1.v
-M PLL 1_altpl	Module	D:/FPGA_learning_prject/FII-PRA040/mult_sim/dt	p/pll1_altpll.v
pll_sys_rst	Module	D:/FPGA_learning_prject/FII-PRA040/mult_sim/pl	_sys_rst.v
+ rt_work	Library	D:/FPGA_learning_prject/FII-PRA040/mult_sim/sir	mulation/modelsim/rtl_v
+ 220model	Library	\$MODEL_TECH//altera/vhdl/220model	
+ 220model_ver	Library	\$MODEL_TECH//altera/verilog/220model	
+ altera	Library	\$MODEL_TECH//altera/vhdl/altera	
+ altera_Insim	Library	\$MODEL_TECH//altera/vhdl/altera_Insim	
+ altera_Insim_ver	Library	\$MODEL_TECH//altera/verilog/altera_Insim	
d <u></u>			•
Design Unit(s)			Resolution

Figure 6.8 Choose the project to simulate

4) In the **Objects** window, choose all the signals and drag them to **Wave** window. See Figure 6.9.

0 - 2 9 0 0 1 1 10 10	2216	-AE1	■ ● ② 当	A # 9	* ++	18	100 ps 2 11 11	B X =	0 1	141	112-0	tayout	Simulate			
Cokerniayout Default		-	9.9.94		0 10 1	ai 🌮	1941		412	122	51	*·*E·}+	Searchi		1000	1
1		111														-
sin - Default	+ # ×	A Transcrip			:+i#2	d 🔹 d	bjects			+ # x	sa Wave -D	elaut				
nstance Design unit	Design un	/modelsis	ase/altera/w	rilog/alter	-L C:/in	V 14	are	Value Kind	Mode 10	1200 121	3.		1.16	25		
i i bur, multikal jut (on junitikal i i plann, nt. jute jelu junitikal i i plann, nt. jute jelu junitikal i eksi visiti i mitu jen eksi visiti i mitu jen ke eksi visiti i mitu jen eksi visiti mitu jen eksi visiti mitu jen eksi visiti visiti visiti	Nodule Module Process Capacity	g/altera # Start t # Loading # Loading # Loading e/altera # Loading # Loading # Loading # Loading # Loading # Loading	<pre>set or set of ime: 03:27:20 work.mult_sim (Cr/intelFPGA verilog/220mor (Cr/intelFPGA verilog/220mor (work.pil_sys, work.pil_sys, verilog/alter (Cr/intelFPGA verilog/alter) (Cr/intelFPGA</pre>	on Jan 05,2 1100/18.0/s Sel.1pm_mult 1100/18.0/s Sel.12M_HINT pst _nf.altpl1 lite/18.0/s	odelsim_as 		ind site seven_seg scan mut_res sys_rst count	H4Z Net H4Z Net 2222222 Net 2222 Net 2222 Net 500 Net 500 Net 2000 Net	In In Out Out Internal Internal Internal			il, san Inst it, gan Inst it, gan Jano it, gan Java it, gan Java it	HZ HZ IIIIIII IIII IIII 500 500 500 500	000		
		e/altera/ ILIES # Loading e/altera/ # Loading e/altera/ # Loading e/altera/ # Loading e/altera/	verilog/alter C:/intelFPGA verilog/alter verilog/alter verilog/alter C:/intelFPGA verilog/alter C:/intelFPGA	_mf.ALTERA_ _mf.pll_ioh _mf.pll_ioh _mf.MF_cycl _lite/10.0/m _mf.cds_m_c _lite/10.0/m	DEVICE_FAM odelsim_ss uf odelsim_ss oneiii_pll odelsim_ss ntr odelsim_ss ntr		Nocesses (Active) :	Type (filtered) State Active Ready	• • • •						
		Ecading e/altera, add wave add wave add wave add wave seg add wave add wave	C:/intelFPGA verilog/alter/ -position end -position end -position end -position end -position end	<pre>ite/18.0/m if.cda_scs sim:/mult_ sim:/mult_ sim:/mult_ sim:/mult_ sim:/mult_ sim:/mult_</pre>	odelsin_as le_cntr sim/rst sim/rst sim/sw sim/seven_ sim/scan sim/sult_r		#455129(#137 #455029(#151 #2907134,#2094 #455129(#1241) #455129(#1241) #455129(#1241) #455129(#1241) #207134,#22403 #2907134,#161115			建金属设置手机						
		es add wave k add wave	-position end	sim:/mult_	sim/sys_cl sim/sys_rs		#4053044816994 #29071741.#14522 #29071741.#146999 #455517241#141972			102 103 105 105		Nov	0.007	5	0.2 m	• Orce 2.

Figure 6.9 Add observation signals

5) Set the signals in **Wave**, right click any signal and a selection window will occur. See Figure 6.10.

💫 Objects		+ 🛃 🗙 🔢 Wave - Default		
▼ Name	Value Kind Mode	년 🗖 Now 🍸 🕨 🍝	Msgs	
sys_st sys_st sys_scan sys_st sys_st	HiZ Net In HiZ Net In zzzzzzz Net In zzzzzzz Net Out zzzz Net Out zzzz Net Out zzzz Net Out zzzz Net Out zzzz Net Interna StX Net Interna StX Net Interna	al a mult_	Add + COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
- Court			Combine Signals Group Ungroup Force	
Processes (Active)		+ @ ×	Clock	
▼ Name	Type (filtered) Sta	ate Ord -	Properties	
#ASSIGN#23670 #ASSIGN#14635		tive 1 eady 12		

Figure 6.10 Set the signals

- 6) Logical signals select Force and select Clock for clock signals
 - A. Set *rst* signal. See Figure 6.11.

Force Selected Signal		×
Signal Name: sim:/mult_s Value: 0	sim/rst	
Freeze C Drive	C Deposit	
Delay For: 0		
Cancel After:		
	OK	Cancel

Figure 6.11 Set *rst* signal

B. Set *Inclk* signal. See Figure 6.12.

M Define Clock	×								
Clock Name									
sim:/mult_sim/inclk									
0 D	ity								
Period C	ncel								
Logic Values High: 1 Low:									
First Edge									
	OK Cancel								

Figure 6.12 Set inclk signal

C. Set *sw* signal. See Figure 6.13.

Force Selected Signal										
Signal Name: sim:/mult_sim/sw										
Value: 1001										
Kind										
Delay For: 0										
Cancel After:										
OK Can	cel									

Figure 6.13 Set sw signal

7) Run simulation. In the tool bar, set the simulation time to be **100 ns**. Click the **Run** icon to run the simulation. See Figure 6.14.

Figure 6.14 Set the simulation time

8) Observe the simulation result. See Figure 6.15.

9) Result analysis

- A. Counter *count* does not have a valid result, instead, unknow result XXXXXX is gotten.
- B. *sys_rst* does not reset signals. It changes from X to 0
- C. Add *pll_locked* signal to the wave, and re-simulate
- D. In Figure 6.16, before PLL starts to lock, the *sys_clk* already has a rising edge, so *PLL_locked* signal is just converted from low to high. There is no reliable reset is formed.

< /mult_sim/rst	St0			
👍 /mult_sim/inclk	St0			
🕳 🁍 /mult_sim/sw	00001001	00001001		
🚛 👍 /mult_sim/seven_seg	2222222			
💶 👍 /mult_sim/scan	2222			
/mult_sim/mult_res	xxxxxxxxxxxxxxxxxxx			
/mult_sim/sys_clk	St1			
/mult_sim/sys_rst	St0			
The sim/count	xxxxxxxxx			
/mult_sim/pll_svs_rs	St1			

- E. Solution
 - a. Define *sys_rst* to be 1'b1
 - b. Use external rst signal to provide reset

Here method **a** is adopted. The revised code is as follows:

module pll_sys_rst(
input	inclk,
output	sys_clk,
output reg	sys_rst = 1'b1
);	

10) Recompile the simulation.

Wave - Default	Wave - Default -																
\$ 1•	Msgs																
₄/mult_sim/rst	St0																
₄ /mult_sim/inclk	St1																٦
🖃 🎝 /mult_sim/sw	9	9															
🖅 🕁 /mult_sim/count	134	1		2	3	4	<u>(5</u>	6	<u>)</u> 7	8	9	10	11	12	(13	14	15
🖃 📥 /mult_sim/mult_res	1197	0		(9)	18	27	36	45	54	63	72	81	<u>(90</u>	99	108	117	126
🖅 👍 /mult_sim/seven_seg	z																
🖅 🛧 /mult_sim/scan	z																
/mult_sim/sys_clk	1																
/mult_sim/sys_rst	0																

Figure 6.17 Recompile the simulation

Since waveform editing efficiency is relatively low, the use of simulation testbench file is encouraged.

Method 2: Write a testbench file for simulation

- (1) Name a new Verilog HDL file *tb_mult.v*.
- (2) The code is as follows:

When writing the testbench file, first mark the time unit of the simulation at the beginning, this experiment is 1 ns, then instantiate the project that needs to be simulated into the testbench file, define the clock cycle and the simulation conditions, and stop the simulation after a certain time. This simulation stops after 1000 clock cycles.

After the compilation, the testbench file is added to the ModelSim for simulation, the specific steps are as follows:

A. Set the testbench file: Assignments -> Settings. See Figure 6.18.

Settings - mult_sim	- 🗆 X								
Category:	Device/Board								
General	Simulation								
Files Libraries	Specify options for generating output files for use with other EDA tools.								
✓ IP Settings	Tool name: ModelSim-Altera								
Design Templates	Run gate-level simulation automatically after compilation								
 Operating Settings and Conditions Voltage 	EDA Netlist Writer settings								
Temperature	Eormat for output netlist: Verilog HDL Time scale: 1 ps								
 Compilation Process Settings 	Output directory: simulation/modelsim								
EDA Tool Settings	Map illegal HDL characters Enable glitch filtering								
Simulation Board-Level	<u>Generate Value Change Dump (VCD) file script</u> <u>Script Settings</u>								
 Compiler Settings VHDL Input 	Design instance name:								
Verilog HDL Input Default Parameters	More EDA Netlist Writer Settings								
Timing Analyzer	NativeLink settings								
Assembler Design Assistant	None								
Signal Tap Logic Analyzer	O <u>C</u> ompile test bench: Test <u>B</u> enches								
Logic Analyzer Interface	Use script to set up simulation:								
SSN Analyzer	O Script to compile test bench:								
	More NativeLink Settings								
	OK Close Apply Help								

Figure 6.18 Simulation setting 1

B. In **Compile test bench**, click **Test Benches** to add tb simulation file. See Figure 6.19.

`timescale 1ns/1ps										
module tb_mult;										
reg		rst;								
reg		clk;								
reg	[7:0]	SW;								
wire	[7:0]	count;								
wire	[15:0]	mult_res;								
// S1 is the i	nstance of	simulation module								
mult_sim S1	.(
.rst		(rst),								
.inclk		(clk),								

```
.sw
                        (sw),
                        (count),
     .count
     .mult_res
                        (mult_res)
);
// Define the clock required for the simulation and display the results in text form
always begin
     #10 clk = ~clk;
     $monitor ("%d * %d = %d", count, sw, mult_res);
end
//Set the simulation condition
initial begin
     rst = 0;
     clk = 1;
     #10 sw = 20;
     #10 sw = 50;
     #10 sw = 100;
     #10 sw = 101;
     #10 sw = 102;
     #10 sw = 103;
     #10 sw = 104;
     #50 sw = 105;
     //stop the signal
     #1000 $stop;
end
endmodule
```

	- 🗆 ×
	Device/Board
Simulation Specify options for generating output files for use with other EDA tools. Tool name ModelEim Alter st Benches stettings for each test bench. ig test bench settings: Name Top Level Module Design Instance Run For	New Edit Delete
OK NativeLink settings Ngne Genpile test bench: Use script to set up simulation: Genpile test bench: Script to compile test bench: Genpile test bench:	Cancel Help
s1	Simulation Specify options for generating output files for use with other EDA tools. Tool Level Module test bench g test bench settings: Name Top Level Module Design Instance Run For Test Bench File(s) OK OK OK OK MativeLink settings Option Script to set up simulation: Script to compile test bench: More NativeLink Settings

Figure 6.19 Simulation setting 2

C. Click **New,** input the **Test bench name**. Make the name be consistent with tb file. See Figure 6. 20.

New Test Bench Settings		×								
Create new test bench settings.										
Test bench name: tb_mult	Test bench name: tb_mult									
Top level module in test bench: tb_mu	ult									
Use test bench to perform VHDL tim	ning simulation									
Design instance name in test bench	n: NA									
Simulation period										
Run simulation until all vector stir	muli are used									
O End simulation at:	s 👻									
Test bench and simulation files										
File name:		Add								
File Name Library	HDL Version	Remove								
		Up								
		Down								
		Properties								
	OK Cancel	Help								

Figure 6.20 Simulation setting 3

D. Click the red ellipse to add the test bench file. Find *tb_mult.v* file written before.

E.	Click Add to add the file.	Click OK (t	hree times)	to finish	the setting.	See Figure 6.21.
					0	0

🚽 New Test Bench	Settings			×						
Create new test bench settings.										
Test bench name: t	Test bench name: tb_mult									
Top level module in	test bench: tb_mu	ılt								
Use test bench to perform VHDL timing simulation										
Design instance	name in test bench	: NA								
Simulation period										
Run simulation	until all vector stin	nuli are used								
O End simulation	ı at:	s 👻								
Test bench and sin	nulation files									
File name:				Add						
File Name	Library	HDL Version		Remove						
tb_mult.v		Default		Up						
				Down						
				Properties						
		ОК	Cancel	Help						

Figure 6.21 Simulation setting 4

(3) Repeat previous step, to start ModelSim to simulate. See Figure 6.22.

Ī	Wave - Default													
I	🐅 🗸	Msgs												
	✓ /tb_mult/rst	0												
	🔶 /tb_mult/clk	0												
		104	104								105			
	+	5	6	7	8	9	10	11	12	13	14	15	16	17
	+	416	520	624	728	832	936	1040	1144	1248	1365	1470	1575	1680
	v													

After a certain delay, outputs will display in Transcript. See Figure 6.23

Because the result of the operation will be one clock cycle later than the input, the multiplier and the result will differ by one line, which does not seem to match, but does not affect the analysis of the experimental results.

-					
ŧ	1	*	102	=	0
ŧ	2	*	103	=	103
ŧ	3	*	103	=	206
ŧ	4	*	104	=	312
ŧ	5	*	104	=	416
ŧ	6	*	104	=	520
ŧ	7	*	104	=	624
ŧ	8	*	104	=	728
ŧ	9	*	104	=	832

Figure 6.23 Text displays operation result

Summary and Reflection

Try to use the switch as the input to the multiplier. The upper four digits are one number, the lower fourth digits are a number, and the two numbers are multiplied to output the result.

Experiment 7 Hexadecimal Number to BCD Code Conversion and Application

7.1 Experiment Objective

- (1) Learn to convert binary numbers to BCD code (bin_to_bcd)
- (2) Learn to convert hexadecimal numbers to BCD code (hex_to_bcd)

7.2 Experimental Implement

Combined with experiment 6, display the results of the operation to the segment display.

7.3 Experiment

7.2.1 Introduction to the Principle of Converting Hexadecimal Number to BCD Code

Since the hexadecimal display is not intuitive, decimal display is more widely used in real life.

Human eyes recognition is relatively slow, so the display from hexadecimal to decimal does not need to be too fast. Generally, there are two methods

(1) Countdown method:

Under the control of the synchronous clock, the hexadecimal number is decremented by 1 until it is reduced to 0. At the same time, the appropriate BCD code decimal counter is designed to increment. When the hexadecimal number is reduced to 0, the BCD counter Just gets with the same value to display.

- (2) Bitwise operations (specifically, shift bits and plus 3 here). The implementation is as follows:
 - Set the maximum decimal value of the expression. Suppose a 16-digit binary value (4digit hexadecimal) needs to be converted to decimal. The maximum value can be

expressed as 65535. First define five four-digit binary units: ten thousand, thousand, hundred, ten, and one to accommodate calculation results

2) Shift the hexadecimal number by one to the left, and put the removed part into the defined variable, and judge whether the units of ten thousand, thousand, hundred, ten, and one are greater than or equal to 5, and if so, add the corresponding bit to 3 until the 16-bit shift is completed, and the corresponding result is obtained.

Note: Do not add 3 when moving to the last digit, put the operation result directly

3) The principle of hexadecimal number to BCD number conversion

Suppose ABCD is a 4-digit binary number (possibly ones, 10 or 100 bits, etc.), adjusts it to BCD code. Since the entire calculation is implemented in successive shifts, ABCDE is obtained after shifting one bit (E is from low displacement and its value is either 0 or 1). At this time, it should be judged whether the value is greater than or equal to 10. If so, the value is increased by 6 to adjust it to within 10, and the carry is shifted to the upper 4-bit BCD code. Here, the pre-movement adjustment is used to first determine whether ABCD is greater than or equal to 5 (half of 10), and if it is greater than 5, add 3 (half of 6) and then shift.

For example, ABCD = 0110 (decimal 6)

- A. After shifting it becomes 1100 (12), greater than 1001 (decimal 9)
- B. By plus 0110 (decimal 6), ABCD = 0010, carry position is 1, the result is expressed as decimal 12
- C. Use pre-shift adjustment, ABCD = 0110 (6), greater than 5, plus 3
- D. ABCD = 1001 (9), shift left by one
- E. ABCD = 0010, the shifted bit is the lowest bit of the high four-bit BCD.
- F. Since the shifted bit is 1, ABCD = 0010(2), the result is also 12 in decimal.
- G. The two results are the same
- H. Firstly, make a judgement, and then add 3 and shift. If there are multiple BCD codes at the same time, then multiple BCD numbers all must first determine whether need to add 2 and then shift.
- (3) The first way is relatively easy. Here, the second method is mainly introduced.

Example 1: Binary to BCD. See Figure 7.1.

100's	10's	1's	Binary	Operation
			1010 0010	
		1	010 0010	<< #1
		10	10 0010	<< #2
		101	0 0010	<< #3
		1000		add 3
	1	0000	0010	<< #4
	10	0000	010	<< #5
	100	0000	10	<< #6
	1000	0001	0	<< #7
	1011			add 3
1	0110	0010		<< #8
Ţ	Î	1		

Figure 7.1 Example 1, bin_to_bcd

Example 2: Hexadecimal to BCD. See Figure 7.2.

Operation	Hundreds	Tens	Units	Binary			
HEX				F	F		
Start				1 1 1 1	1 1 1 1		
Shift 1			1	1 1 1 1	1 1 1		
Shift 2			11	1111	1 1		
Shift 3			111	1111	1		
Add 3			1010	1 1 1 1	1		
Shift 4		1	0101	1111			
Add 3		1	1000	1111			
Shift 5		1 1	0001	1 1 1			
Shift 6		110	0011	1 1			
Add 3		1001	0011	1 1			
Shift 7	1	0010	0111	1			
Add 3	1	0010	1010	1			
Shift 8	1 0	0101	0101				
BCD	2	5 ht	tp://plog.	csdn.net/l1	200503028		

Figure 7.2 hex_to_bcd

7.2.2 Introduction of the Program

The first step: the establishment of the main program framework

module HEX_BCD (

	input		[15:0]	hex,
	output	reg	[3:0]	ones,
	output	reg	[3:0]	tens,
	output	reg	[3:0]	hundreds,
	output	reg	[3:0]	thousands,
	output	reg	[3:0]	ten_thousands
);				

Enter a 16-bit binary number *hex*, which can represent a maximum of 65535 decimal, so output *ones*, *tens*, *hundreds*, *thousands*, and *ten_thousands*.

The second step: the implementation of bit operation

```
[15:0]
                   hex_reg;
reg
integer
                   i;
always @ (*)
begin
    hex_reg = hex;
    ones = 0;
    tens = 0;
    hundreds = 0;
    thousands = 0;
    ten_thousands = 0;
    for (i = 15; i >= 0; i = i-1) begin
         if(ten_thousands >= 5)
         ten_thousands = ten_thousands + 3;
         if(thousands >= 5)
              thousands = thousands + 3;
```

```
if(hundreds \geq 5)
              hundreds = hundreds + 3;
         if(tens >= 5)
              tens = tens + 3;
         if(ones >= 5)
              ones = ones + 3;
         ten_thousands = ten_thousands << 1;</pre>
         ten_thousands[0] = thousands[3];
         thousands = thousands << 1;
         thousands[0] = hundreds[3];
         hundreds = hundreds << 1;
         hundreds[0] = tens[3];
         tens = tens << 1;
         tens[0]= ones[3];
         ones = ones << 1;
         ones[0] = hex_reg[15];
         hex_reg = {hex_reg[14:0], 1'b0};
    end
end
```

Referring to Figure 7.2, the former part of the program is the judgment calculation part, and if it is greater than or equal to 5, then adds 3. The latter part is the shift part.

The third step: verification

Referring to Experiment 6, simulation was performed using ModelSim, and the simulation conditions are set as follows:

initial begin

hex = 0 ;

```
repeat (20) begin
#10;
hex = {$random}%20000;
#10;
end
end
```

At the beginning, the 16-bit binary number is equal to 0. The delay is 10 ns. The 16-bit binary number takes a random number less than 20,000. A delay of 10 ns is applied, and the process is repeated 20 times.

After the ModelSim is set and the testbench file is added, perform the simulation. The result is shown in Figure 7.3.

and Maria Default	12		1.2		12				Y		
wave - Default											
* •	Msgs									·	
	11318	0 19748	(8097	18057	17987	(18957	(12	325 (4082	(3361	(6029	11318
Image: Hex_BCD_tb/ones	8	(0)(8	(7				<u>(5</u>) 2	<u>(1</u>) 9	(8
HEX_BCD_tb/tens	1	(0)(4	<u>)</u> 9	(5	<u>)</u> 8	(5	<u>(2</u>) 8	(6) 2	1
+	3	0)7	χo		<u>)</u> 9		<u>(3</u>)(0	(3)(0	<u>) 3</u>
+	1	(0)(9	(8		7	(8	2	4	(3) 6	1
HEX_BCD_tb/ten_t	1	0)1	χo	<u>) (1</u>)(0) 1
P											

Figure 7.3 Simulation for binary to decimal

Remark and reflection:

- A. The assignment symbols for the examples above are "=" instead of "<=". Why?
- B. Since the whole program is designed to be combinational logic, when invoking the modules, the other modules should be synchronized the timing.

7.4 Application of Hexadecimal Number to BCD Number

Conversion

- (1) Continue to complete the multiplier of Experiment 6 and display the result on segment display in decimal. Every 1 second, the calculation results on the segment display changes once. The experiment needs to use frequency division, segment display, multiplier and hexadecimal number to BCD number conversion.
- (2) Compilation. Observe the **Timing Analyzer** in **Compilation Report**.

1) Fmax Summary 83.71 MHz. See Figure 7.4.

Figure 7.4 Fmax Summary

2) Setup Memory

■ Flow Settings	Clock	Slack	End Point T
륨 Flow Non-Default Global Settings	1 pll sys rst instiPLL1 instialtpll componentiauto generatedipll1iclk[0]	-2.057	-34,963
III Flow Elapsed Time			
= Flow OS Summary			
Flow Log			
Analysis & Synthesis			
Fitter			
Assembler			
Timing Analyzer			
Summary			
Parallel Compilation			
Clocks			
🗸 🏲 Slow 1200mV 85C Model			
🎟 Fmax Summary			
Timing Closure Recommendation:			
🚥 Setup Summary			

Figure 7.5 Setup time summary

3) Timing Closure Recommendation. See Figure 7.6.

Figure 7.6 Timing Analysis

4) From the above three indicators, the above programming does not meet the timing requirements. It can also be seen that the maximum delay path is the delay of the output of the multiplier to *HEX_BCD*.

There are 3 solutions:

- A. Reduce the clock frequency
- B. Increase the timing of *HEX_BCD* and increase the pipeline
- C. Insert pipeline isolation at the periphery (can reduce some delay)

The way to increase the pipeline, will be introduced in the follow-up experiment, because the function of *HEX_BCD* is mainly used to display the human-machine interface, the speed requirement is low, and the frequency reduction method is adopted here.

- (3) Modify PLL to increase an output of 20 MHz frequency (BCD_clk)
- (4) Recompile and observe timing results
- (5) Lock the pins, compile, and program FII-PRA040 development board for testing

7.5 Experiment Verification

The first step: pin assignment

Table 7.1 Hexadecimal number to BCD pin mapping

Signal Name	Network Label	FPGA Pin	Description
clk	CLK_50M	G21	Input clock

rst_n	PB3	Y6	Reset
scan[0]	SEG_3V3_D5	F14	Bit selection 0
scan[1]	SEG_3V3_D4	D19	Bit selection 1
scan[2]	SEG_3V3_D3	E15	Bit selection 2
scan[3]	SEG_3V3_D2	E13	Bit selection 3
scan[4]	SEG_3V3_D1	F11	Bit selection 4
scan[5]	SEG_3V3_D0	E12	Bit selection 5
seven_seg[0]	SEG_PA	B15	Segment a
seven_seg[1]	SEG_PB	E14	Segment b
seven_seg[2]	SEG_PC	D15	Segment c
seven_seg[3]	SEG_PD	C15	Segment d
seven_seg[4]	SEG_PE	F13	Segment e
seven_seg[5]	SEG_PF	E11	Segment f
seven_seg[6]	SEG_PG	B16	Segment g
seven_seg[7]	SEG_DP	A16	Segment h
SW[7]	PB7	W6	Swicth 7
SW[6]	PB6	Y8	Swicth 6
SW[5]	PB5	W8	Swicth 5
SW[4]	PB4	V9	Swicth 4
SW[3]	PB3	V10	Swicth 3
SW[2]	PB2	U10	Swicth 2
SW[1]	PB1	V11	Swicth 1
SW[0]	PBO	U11	Swicth 0

Step 2: development board verification

After the pin assignment is completed, the compilation is performed. Program the development board for verification after passing. The experimental result is shown in Figure 7.7. The value of the DIP switch input is 00001010, decimal 10, the counter is constantly accumulating, so the display result is always accumulatively changed by 10.

Figure 7.7 Experiment phenomenon

Experiment Summary and Reflection

- (1) How to implement BCD using more than 16 bits binary numbers
- (2) What is a synchronous clock and how to handle an asynchronous clock
- (3) Learn to design circuits meeting the requirement

Experiment 8 Use of ROM

8.1 Experiment Objective

- (1) Study the internal memory block of FPGA
- (2) Study the format of *.mif and how to edit *.mif file to configure the contents of ROM
- (3) Learn to use RAM, read and write RAM

8.2 Experiment Implement

- (1) Design 16 outputs ROM, address ranging 0-255
- (2) Interface 8-bit switch input as ROM's address
- (3) Segment display the contents of ROM and require conversion of hexadecimal to BCD output.

8.3 Experiment

8.3.1 Introduction of the Program

This experiment was carried out on the basis of Experiment 7, and the contents of Experiment 7 were cited, so only the IP core ROM portion is introduced here.

(1) In Installed IP, choose Library -> Basic Function -> On Chip Memory -> ROM: 1-PORT, file type to be Verilog HDL. Choose 16 bits and 256 words for output. See Figure 8.1.

N MegaWizard Plug-In Manager (pag	ge 1 of 5] ? ×	IP Catalog
		٩.
🔄 🕘 ROM: 1-PORT	About Documentation	🗸 雛 Installed IP
		✓ Project Directory
Settings		No Selection Available
General Regs/Clken/Actrs Me	em Init	✓ Library
		✓ Basic Functions
onep_rom	Currently selected device family: Cyclone 10 LP	> Arithmetic
	Match project/default	Bridges and Adaptors
8 P 10	How wide should the 'n' output bus be?	Clocks; PLLs and Resets
256		Configuration and Programming
clock Block type: AUTO	How many 10-bit words or memory?	> 1/0
	What should the memory block type be?	> Miscellaneous
		 On Chip Memory
	Auto MLAB M9K	₱ FIFO
	O M144K O LCs Options	RAM: 1-PORT
	Set the maximum block depth to Auto \checkmark words	RAM: 2-PORT
		ROM: 1-PORT
	What clocking method would you like to use?	ROM: 2-PORT
	Single clock	Shift register (RAM-based)
	O Dual clock: use separate 'input' and 'output' clocks	Simulation; Debug and Verification
		> DSP
		> Interface Protocols
		+ Add
Resource Usage		
1 M9K	Cancel < Back Next > Einish	

Figure 8.1 RAM IP core invoking

- (2) According to the default setting, an initial ROM file in the location where red oval circles needs to be added. See Figure 8.2. In the figure, a *.mif file has already been added.
- (3) Create a top level entity *rom.mif*
 - Generate *rom.mif* file. Go to File -> New -> Memory Files -> Memory Initialization File. See Figure 8.3.
 - 2) In Figure 8.4, modify the Number of words and Word size.
 - 3) In Figure 8.5, in the address area, right click to input the data or change the display format, such as hexadecimal, octal, binary, unsigned, signed, etc.

🕺 MegaWizard Plug-In Manager [page 3 (of 5] ? ×	
🗳 ROM: 1-PORT	About Documentation	1
1 Parameter Settings		
General > Regs/Clken/Adrs > Mem Init		
address[70] g g g g g g g g g g g g g	Do you want to specify the initial content of the memory? No. leave it blank Initialize memory content data to XXX on power-up in simulation Yes, use this file for the memory content data You can use a Hexadecimal (Intel-format) File [.hex] or a Memory Initialization File [.mif])	
	Browse File name: ./rom.mif	
	The initial content file should conform to which port's dimensions? $$\rm PORT_A$ \sim$	
	Allow In-System Memory Content Editor to capture and update content independently of the system dock The 'Instance ID' of this ROM is: NONE	
Resource Usage 1 M9K	Cancel < Back Next > Einish	-]_::

Figure 8.2 ROM setting

Figure 8.3 New *.mif file

Figure 8.4 *.mif file setting 1

\ddi	+0_	+1	+2	+3	+4	+5	+6	+7
000	0000	0900	FFFF	00FF	0200	0044	0027	04F6
800	0000	0000	0000	0000	0000	0000	0000	0000
010	0000	0000	0000	0000	0000	0000	0000	0000
018	0000	0000	0000	0000	0000	0000	0000	0000
020	c000	0000	0000	0000	0000	0000	0000	0000
028	0000	0000	0000	0000	0000	0000	0000	0000
030	0000	0000	0000	0000	0000	0000	0000	0000
038	0000	0000	0000	0000	0000	0000	0000	0000
040	0000	0000	0000	0000	0000	0000	0000	0000
048	0000	0000	0000	0000	0000	0000	0000	0000
050	000	0000	0000	0000	0000	0000	0000	0000
058	0000	0000	0000	0000	0000	0000	0000	0000
060	0000	0000	0000	0000	0000	0000	0000	0000
068	0000	0000	0000	0000	0000	0000	0000	0000
070	0000	0000	0000	0000	0000	0000	0000	0000
078	0000	0000	0000	0000	0000	0000	0000	0000
080	0000	0000	0000	0000	0000	0000	0000	0000

Figure 8.5 *.mif file setting 2

4) After completing the ROM and IP's setting, fill the data for rom.mif. For convenience of verification, store the same data as the address from the lower byte to higher byte in ascending form. Right click to select **Custom Fill Cells**. See Figure 8.6. The starting address is 0, ending at 255 (previous address setting depth is 256). The initial value is 0 and the step is 1.

🕙 Custom Fill Cells	×
Allows you to custom fill an address range with either a repeating sequence, or from a starting poin with incrementing or decrementing values.	t
Address range The current address radix is: unsigned decimal Starting address: 0 Ending address: 255	
Custom value(s) The current memory radix is: hexadecimal O Repeating sequence (numbers can be delimited by either a space or a comma)	
Incrementing / decrementing Starting value: Increment by	
OK Cancel Help	

Figure 8.6 Fill date for rom.mif

5) After the setup, the system will fill in the data automatically. See Figure 8.7.

Addr	+0	+1	+2	+3	+4	+5	+6	+7	ASCII
0	0000	0001	0002	0003	0004	0005	0006	0007	
8	0008	0009	000A	000B	000C	000D	000E	000F	
16	0010	0011	0012	0013	0014	0015	0016	0017	
24	0018	0019	001A	001B	001C	001D	001E	001F	
32	0020	0021	0022	0023	0024	0025	0026	0027	!"#\$%&'
40	0028	0029	002A	002B	002C	002D	002E	002F	()*+,/
48	0030	0031	0032	0033	0034	0035	0036	0037	01234567
56	0038	0039	003A	003B	003C	003D	003E	003F	89:;<=>?
64	0040	0041	0042	0043	0044	0045	0046	0047	@ABCDEFG

Refer to the design of conversion from hexadecimal to BCD in Experiment 7, display the data in ROM on the segment display.

(4)

ROM instantiation:

reg [15:0] rom_q_r;

always @ (posedge BCD_clk)

rom_q_r<=rom_q;	rom_q_r<=rom_q;						
HEX_BCD HEX_BCD_ins	HEX_BCD HEX_BCD_inst(
.hex	(rom_q_r),						
.ones	(ones),						
.tens	(tens),						
.hundreds	(hundreds),						
.thousands	(thousands),						
.ten_thousands	(ten_thousands)						
);							
onep_rom onep_rom	onep_rom onep_rom_dut(
.address	(sw),						
.clock	(sys_clk),						
.q	(rom_q)						
);							

8.4 Experiment Verification

Pin assignments are consistent with Experiment 7. After the compilation is completed, the board is verified. As shown in Figure 8.8. When the DIP switch is 10010100, the decimal expression is 148, which means the contents of the 148th byte of the ROM is read, and the segment display will illustrate 148, which is consistent with the data deposited before.

Figure 8.8 Experiment result

Experiment Summary and Reflection

- 1. How to use the initial file of ROM to realize the decode, such as decoding and scanning the segment display.
- 2. Write a *.mif file to generate sine, cosine wave, and other function generators.
- 3. Comprehend application, combine the characteristic of ROM and PWM to form SPWM modulation waveform.

Experiment 9 Use Dual-port RAM to Read and Write Frame Data

9.1 Experiment Objective

- (1) Learn to configure and use dual-port RAM
- (2) Learn to use synchronous clock to control the synchronization of frame structure
- (3) Learn to use asynchronous clock to control the synchronization of frame structure

9.2 Experiment Implement

- (1) Observing the synchronization structure of synchronous clock frames using SignalTap II
- (2) Extended the use of dual-port RAM
- (3) Design the use of three-stage state machine
- (4) Design a 16-bit data frame
 - 1) Data is generated by an 8-bit counter: Data={~counta,counta}
 - 2) The ID of the data frame inputted by the switch (7 bits express maximum of 128 different data frames)
 - 3) 16-bit checksum provides data verification
 - A. 16-bit checksum accumulates, discarding the carry bit
 - B. After the checksum is complemented, append to the frame data
 - 4) Provide configurable data length *data_len* by parameter
 - 5) Packet: When the data and checksum package are written to the dual-port RAM, the userID, the frame length and the valid flag are written to the specific location of the dual-port RAM. The structure of the memory is shown in Table 9.1.

Table 9.1 Memory structure

Wr_addr	Data/Flag	Rd_addr
8'hff	{valid,ID,data_len}	8'hff

	N/A	
8'hnn+2	N/A	8'hnn+2
8'hnn+1	~checksum+1	8'hnn+1
8'hnn	datann	8'hnn
8'h01	Data1	8'h01
8'h00	Data0	8'h00

6) Read and write in an agreed order

Valid is the handshake signal. This flag provides the possibility of read and write synchronization, so the accuracy of this signal must be ensured in the program design.

9.3 Experiment

9.3.1 Introduction of the program

The first step: the establishment of the main program framework

```
module frame_ram
#(parameter data_len=250)
(
input
                      inclk,
input
                      rst,
             [6:0]
input
                      sw,
output
        reg [6:0]
                      oID,
output
                      rd_done,
        reg
output reg
                      rd_err
);
```

The second step: the definition of the state machine
parameter	[2:0]	mema_idle=0,
		mema_init=1,
		mema_pipe0=2,
		mema_read0=3,
		mema_read1=4,
		mema_wr_data=5,
		mema_wr_chsum=6,
		mema_wr_done=7;
parameter	[2:0]	memb_idle=0,
		memb_init=1,
		memb_pipe0=2,
		memb_read0=3,
		memb_read1=4,
		memb_rd_data=5,
		memb_rd_chsum=6,
		memb_rd_done=7;

The third step: other definitions

Clock variable definition			inition
	wire		sys_clk;
	wire		BCD_clk;
	wire		sys_rst;
	reg		ext_clk;
Dual-port RAM interface definition			erface definition
	reg	[7:0]	addr_a;
	reg	[15:0]	data_a;
	reg		wren_a;

wire	[15:0]	q_a;
reg	[7:0]	addr_b;
reg		wren_b;
wire	[15:0]	q_b;
Write s	tate machi	ne part variable definition
reg	[6:0]	user_id;
reg	[7:0]	wr_len;
reg	[15:0]	wr_chsum;
wire		wr_done;
reg	[7:0]	counta;
wire	[7:0]	countb;
assign o	countb=~co	ounta;
reg	[15:0]	rd_chsum;
reg	[7:0]	rd_len;
reg	[15:0]	rd_data;
reg		ext_rst;
reg	[2:0]	sta;
reg	[2:0]	sta_nxt,;
Read st	ate machir	ne part variable definition
reg	[15:0]	rd_chsum;
reg	[7:0]	rd_len;
reg	[15:0]	rd_data;
reg	[2:0]	stb;
reg	[2:0]	stb_nxt;

Step 4: Generate dual-port RAM, PLL

dp_ram dp_ram_inst

(

```
.address_a
                        (addr_a),
     .address_b
                        (addr_b),
     .clock
                        (sys_clk),
     .data_a
                        (data_a),
     .data_b
                        (16'b0),
     .wren_a
                        (wren_a),
     .wren_b
                        (wren_b),
                        (q_a),
     .q_a
     .q_b
                        (q_b)
);
pll_sys_rst pll_sys_rst_inst
(
     .inclk
                        (inclk),
     .sys_clk
                        (sys_clk),
     .BCD_clk
                        (BCD_clk),
                        (sys_rst)
     .sys_rst
);
```

The RAM is 16 bits wide and 256 depth. The PLL inputs a 50 MHz clock, outputs 100 MHz as the operating clock of other modules, and 20 MHz is used to drive the segment display.

```
Step 5: data generation counter
```

```
always @ (posedge sys_clk)
if(sys_rst) begin
    counta <= 0;
    user_id <= 0;
end
else begin</pre>
```

```
counta <=counta + 1;
```

```
user_id <= sw;
```

end

```
Step 6: write state machine
```

```
assign wr_done = (wr_len == (data_len - 1'b1));
// Think why using wr_len==data_len-1 instead of wr_len==data_len
//First stage
always @ (posedge sys_clk)
begin
    if (sys_rst) begin
         sta = mema_idle;
    end
    else
         sta = sta_nxt;
end
//Second stage
always @ (*)
begin
    case (sta)
         mema_idle : sta_nxt = mema_init;
         mema_init
                     : sta_nxt = mema_pipe0;
         mema_pipe0 :
                           sta_nxt = mema_read0;
         mema_read0 :
         begin
             if (!q_a[15])
                  sta_nxt = mema_read1;
             else
```

```
sta_nxt = sta;
        end
        mema_read1 :
        begin
            if (!q_a[15])
                sta_nxt = mema_wr_data;
            else
                sta_nxt = sta;
        end
        mema_wr_data :
        begin
            if (wr_done)
                 sta_nxt = mema_wr_chsum;
            else
                sta_nxt = sta;
        end
        mema_wr_chsum : sta_nxt = mema_wr_done;
        mema_wr_done : sta_nxt = mema_init;
        default : sta_nxt = mema_idle;
    endcase
end
```

```
//Third stage
always @ (posedge sys_clk)
begin
case (sta)
mema_idle :
begin
```

addr_a	<= 8'hff;
wren_a	<= 1'b0;
data_a	<= 16'b0;
wr_len	<= 8'b0;
wr_chsum	<= 0;
end	
mema_init, mema	_pipe0, mema_read0, mema_read1 :
begin	
addr_a	<= 8'hff;
wren_a	<= 1'b0;
data_a	<= 16'b0;
wr_len	<= 8'b0;
wr_chsum	<= 0;
end	
mema_wr_data	:
begin	
addr_a	<= addr_a + 1'b1;
wren_a	<= 1'b1;
data_a	<= {countb, counta};
wr_len	<= wr_len + 1'b1;
wr_chsum	<= wr_chsum + {countb, counta};
end	
mema_wr_chsum	:
begin	
addr_a <= a	addr_a + 1'b1;
wr_len <=	wr_len + 1'b1;
wren_a <=	1'b1;
data_a <=	(~wr_chsum) + 1'b1;

```
end
mema_wr_done :
    begin
        addr_a <= 8'hff;
        wren_a <= 1'b1;
        data_a <= {1'b1, user_id, wr_len};
        end
        default : ;
        endcase
end</pre>
```

Write order:

- 1. Read the flag of the 8'hff address (control word). If valid=1'b0, the program proceeds to the next step, otherwise waits
- 2. Address plus 1, 8'hff+1 is exactly zero, write data from 0 address and calculate the checksum
- 3. Determine whether the predetermined data length is reached. If so, proceeds to next step, otherwise continue writing the data, and the checksum is calculated.
- 4. checksum complements and write to memory
- 5. Write the control word in the address 8'hff, packet it

Step 7: read state machine

```
//First stage
always @ (posedge sys_clk)
begin
if (ext_rst) begin
stb = memb_idle;
end
else
```

```
stb = stb_nxt;
end
//Second stage
always @ (*)
begin
    case (stb)
        memb_idle : stb_nxt = memb_init;
        memb_init
                          stb_nxt = memb_pipe0;
                    :
        memb_pipe0 :
                          stb_nxt = memb_read0;
         memb_read0 :
         begin
             if (q_b[15])
                 stb_nxt = memb_read1;
             else
                 stb_nxt = memb_init;
         end
         memb_read1 :
         begin
             if (q_b[15])
                 stb_nxt = memb_rd_data;
             else
                 stb_nxt = memb_init;
         end
         memb_rd_data
                          :
         begin
             if(rd_done)
                 stb_nxt = memb_rd_chsum;
             else
```

```
stb_nxt = stb;
end
memb_rd_chsum : stb_nxt = memb_rd_done;
memb_rd_done : stb_nxt = memb_init;
default : stb_nxt = memb_idle;
endcase
end
```

//Stage three, the actual operation needs to be driven by the edge of the clock.

always @	always @ (posedge sys_clk)				
begin	begin				
case	case (stb)				
	memb_idle :				
	begin				
	addr_b	<= 8'hff;			
	rd_data	<= 0;			
	rd_chsum	<= 0;			
	wren_b	<= 1'b0;			
	rd_len	<= 8'b0;			
	oID	<= 7'b0;			
	rd_err	<= 1'b0;			
	end				
	memb_init :				
	begin				
	addr_b	<= 8'hff;			
	rd_data	<= 0;			
	rd_chsum	<= 0;			

wren_b	<= 1'b0;
rd_len	<= 8'b0;
oID	<= 7'b0;
rd_err	<= 1'b0;
end	
memb_pipe0 :	
begin	
addr_b <= 8	3'b0;
end	
memb_read0 :	
begin	
if (q_b[15])	
addr_b	<= addr_b + 1'b1;
else	
addr_b	<= 8'hff;
rd_data	<= 0;
rd_chsum	<= 0;
wren_b	<= 1'b0;
rd_len	<= 8'b0;
oID	<= 7'b0;
end	
memb_read1 :	
begin	
if(q_b[15])	
addr_b	<= addr_b + 1'b1;
else	
addr_b	<= 8'hff;
rd_data	<= 0;

rd_chs	um	<= 0;
wren_l	b	<= 1'b0;
rd_len		<= q_b[7:0];
oID		<= q_b[14:8];
end		
memb_rd_c	data	:
begin		
addr_b	0	<= addr_b + 1'b1;
rd_dat	а	<= q_b;
rd_chs	um	<= rd_chsum + rd_data;
wren_l	b	<= 1'b0;
rd_len		<= rd_len - 1'b1;
end		
memb_rd_c	chsum	:
begin		
addr_b	D	<= 8'hff;
wren_l	b	<= 1'b0;
if (rd_	_chsum)	
rd	l_err	<= 1'b1;
end		
memb_rd_c	done	:
begin		
addr_b	D	<= 8'hff;
wren_l	b	<= 1'b1;
end		
default :	;	
endcase		
end		

Read order

- 1. *idle* is the state after reset
- 2. Init: Initialization, set the address to 8'hff
- Rd_pipe0: Add a latency (since the read address and data are both latched). Address
 +1, forming a pipeline structure
- 4. *Read0*: Set the address to 8'hff, read the control word and judge whether the valid bit is valid.
 - a. If valid=1'b1, address +1, proceeds to the next step
 - b. If *valid*=1'b0, it means the packet is not ready yet, the address is set to be 8'hff and returns to the *init* state.
- 5. *Read1*: Read the control word again
 - a. If *valid*=1'b1, address+1, ID and data length are assigned to the corresponding variables and proceeds to the next step
 - b. If *valid*=1'b0, it means the packet is not ready yet, the address is set to 8'hff, and returns to the *init* state.
- 6. Rd_data:
 - a. Read data and pass to data variables
 - b. Calculate checksum, data_len 1
 - c. Determine whether the data_len is 0
 - i. 0: all data has been read, proceeds to the next step
 - ii. Not 0: continue the operation in current state
- 7. *rd_chsum*: Read the value of checksum and calculate the last checksum. Correct the data and set the flag of *rd_err*
- 8. *rd_done*: The last step clears the valid flag in memory and opens the write enable for the next packet.

9.3 Experiment Verification

The first step: pin assignment

Signal Name	Network Label	FPGA Pin	Port Description
Inclk	CLK_50M	G21	Input clock
rst	PB3	Y6	reset
SW[7]	SW7	W6	Switch input 7
SW[6]	SW6	Y8	Switch input 6
SW[5]	SW5	W8	Switch input 5
SW[4]	SW4	V9	Switch input 4
SW[3]	SW3	V10	Switch input 3
SW[2]	SW2	U10	Switch input 2
SW[1]	SW1	V11	Switch input 1
SW[0]	SWO	U11	Switch input 0

Table 9.2 Frame data read and write experiment pin mapping

Step 2: Observe the read and write results of the dual-port RAM with SignalTap

(1) In order to facilitate the observation of the read and write state machine synergy results, the data length is changed to 4 here and recompile. Users can test themselves using long data.

module	module frame_ram					
#(param	#(parameter data_len=4)					
(
input		inclk,				
input		rst,				
input	[6:0]	SW,				
output	reg [6:0]	oID,				
output	reg	rd_done,				
output	reg	rd_err				
);						

(2) Observe the simulation result

- 1) Observe the handshake mechanism through dual-port RAM
 - A. Determine whether the reading is started after the packet is written
 - B. Determine whether the write packet is blocked before reading the entire packet is

completed

- 2) Observe the external interface signal and status
 - A. rd_done, rd_err

Set *rd_err* = 1, or the rising edge is the trigger signal to observe whether the error signal is captured

- B. Observe whether *wren_a*, *wren_b* signal and the state machine jump are strictly matched to meet the design requirements
- (3) SignalTap result. See Figure 9.1.

Experiment Summary and Reflection

- (1) Review the design requirements of how to analyze an actual demand, to gradually establish a model of digital control and state machine and finally design it.
- (2) Modify the third stage of the state machine into the if...else model and implement.
- (3) Focus on thinking If the read and write clocks are different. After it becomes an asynchronous mechanism, how to control the handshake protocol.
- (4) According to the above example, consider how dual-port RAM can be used in data acquisition, asynchronous communication, embedded CPU interface, and DSP chip interface.
- (5) How to build ITCM with dual-port RAM and DTCM preparing for future CPU design.

🤧 Signal Tap Logic Analyzer - D:/FPGA_learr	ning_prject/FII-PRA040/dua	al_port_ram/frame_ram	- frame_ram - [stp1.stp]*								- c	x t
	Noois Window Help									Sea	rch altera	LCOM 🔍
Instance Manager: 🔧 😒 🛎 🔛 Rea	dy to acquire				×	JTAG Chair	n Configuration: JT/	IG ready				×
Instance Status	Enabled LEs: 2571	Memory: 733 Small: 0	/0 Medium: 91/ Large: 0/0)		Hardware:	MBFTDI-Blaster v1,	3b (64) [MBUSB-	0]		•	Setup
auto_signaltap_0 Not running	2571 cells 7	733184 bits 0 blocks	90 blocks 0 blocks									
						Device:	@1:10CL040(Y Z)/	EP3C40/EP4CE3	0/_ (0x020F40DD)		•	Scan Chain
						>> SOF N	fanager: 🚠 🕚					-
log: Trig @ 2019/01/13 07:01:54 (0:0:3.9 elap	2				click to insert time bar							
Type Alias Name	12,40 12,42	12,44	1246 1248	1250 1252	1254 1256	, 125	8 12,60	1262	12/54	1266 , 1268		12,70
st rst												
* counta[7_0]	(52h / 53h / 54h / 5	i5h X 56h X 57h X 5	8h 🕹 59h 🕹 5Ah 🕹 5Bh 🕹 5Ch	X 5Dh X 5Eh X 5Fh X	60h X 61h X 62h X 63	3h X 64h X	65h X 66h X 67h	X 68h X 69h X	6Ah X 6Bh X 6C	h X 6Dh X 6Eh X 6	Eh_X_701	LL Z1h
T rd_one	-											
wren a												
wren b												
addr_a[70]	FFh	00h X 01h X 0	2h (03h (04h (FFh				X oon X o	1h X 02r	103h
Image: Image	8105h 00	200h XAA	55h) A956h) A857h) A758h) (5CA6	ъX		8105h			X	0000h	9260	3h)(916Eh)
🖢 🗷 data_a[150]	0000h	AA55h A956h A8	57h/A758h/SCA6h/8105h/			000	Oh			(926Dh)(91	6Eh \ 906F	h)(8F70h)
	00h	<u> 02h X 0</u>	3h X 04h X 05h X			00	h			<u>X 016 X 0</u>	2h X 03r	
* wr_chsum[15.0]	0000h	XAA55hX53ABhXFC	02hX A35Ah X	V V V		000	on	v		\926Dh123	DBh XB444	MhX 43BAh
* addr_b[7.0]	OOh X FFh X U	ADh X FFh A U	Oh X FFh X OOh A	FFh X 00h X 01n X	02h 1 03h 1 04h / u	5h X O6h A	07h X 08h X	FFh	OOh X Frn	X 00h X PEN	A OUR	L_FED_
amop_ram_insid_o[15.0]	0000hL230h/	0000h Account	0000h / M55n/ 0000h	AASSNA alush Aa	ASSE/ASSE/ASSE/ASSE/ASSE/ASSE/ASSE/ASSE	SBh/SLADDA	UUUUN ECARDY	/sinouv	0000h /JMS	5h/ 0000n /.m	aan/	1000h
Trd_data[15.0]			0000h			ADD/ ECO201	\$1,400 A		0000h			
Erd len[7.0]	-		00h	X	05h X 04h X 03h X 03	2h X 01h X	00h X FEh	X		00h		
* oID[6_0]			Q0h	X		01h		X		oon		
⇒ sw[6.0]					01h							
* user_id[60]					01h							
👗 ext_rst												
😰 🖲 sta	08h (10h)	20h	40h 80h 02h 04h			OSh			X 10	h X 20h		
STD .	<u>X 08h A 02h A 04n A u</u> K	<u>18h & Ozh & O4h / u</u>	<u>8h X 02h X 04h X 08h X uzn</u>	L <u>X 04h / 08h / 1un /</u>	200		<u>, 40h A aun</u>	<u>∖ 02n ∖ 04n ∖</u>	<u>08h / 02h / 04</u>	<u>h X Osh X Ozh X u</u>	<u>4h ∧ Ger</u>	>
ጆ Data 🛛 🐺 Setup												
Hierarchy Display: ×	Data Log: 📴											×
✓ ✓ ● frame_ram ✓ ● dp_ramcdp_ram_inst	🖞 auto_signaltap_0											
auto_signaltap_0												
			CH N	「英力」簡:							100%	00:01:2
	Ū.	Ħ 😑	🖿 📿 💿 🥝) 😨 🖏 🕯	y 💶 🗞	s.		Desktop	° & & ^	🖿 (i. d) 🖑	7:02 AM	13

Figure 9.1 SignalTap II simulation

Experiment 10 Asynchronous Serial Port Design and Experiment

10.1 Experiment Objective

Because asynchronous serial ports are very common in industrial control, communication, and software debugging, they are also vital in FPGA development.

- (1) Study the basic principles of asynchronous serial port communication, handshake mechanism and data frame structure
- (2) Master asynchronous sampling techniques
- (3) Review the frame structure of the data packet
- (4) Learn to use FIFO
- (5) Joint debugging with common debugging software of PC (SSCOM, Tera Term, etc.)

10.2 Experiment Implement

- (1) Design and transmit full-duplex asynchronous communication interface Tx, Rx
- (2) Baud rate of 11520 bps, 8-bit data, 1 start bit, 1 or 2 stop bits
- (3) Receive buffer (Rx FIFO), transmit buffer (Tx FIFO)
- (4) Forming a data packet
- (5) Packet parsing

10.3 Experiment

10.3.1 Introduction to the UART Interface

A USB-B interface and a CP2102 chip are onboard for serial data communication.

The CP2102 features a high level of integration with a USB 2.0 full-speed function controller,

USB transceiver, oscillator, EEPROM, and asynchronous serial data bus (UART) to support modem full-featured signals without the need for any external USB devices. See Figure 10.1 for the physical picture.

Figure 10.1 USB-B Interface and CP2102 Chip Physical Picture

10.3.2 Hardware Design

Figure 10.2 Schematics of the serial port

The principle of USB serial port conversion is shown in Figure 10.2. The TTL_TX and TTL_RX of the CP2102 are connected to the FPGA to transmit and receive data. After being processed internally by the chip, the D_R_P and D_R_N are connected to the USB interface through a protection chip, and the data is transmitted with the PC to implement serial communication.

10.3.3 Introduction of the Program

dule uart_t	ton			
module uart_top				
input		inclk,		
input		rst,		
input	[1:0]	baud_sel,		
input		tx_wren,		
input		tx_ctrl,		
input	[7:0]	tx_data,		
input		tx_done,		
output		txbuf_rdy,		
input		rx_rden,		
output	[7:0]	rx_byte,		
output		rx_byte_rdy,		
output		sys_rst,		
output		sys_clk,		
input		rx_in,		
output		tx_out		
	input input input input input output output output output input output	input input [1:0] input [1:0] input [7:0] input [7:0] output [7:0] output [7:0] output [1:0] output [1:0]		

The first step: the main program architecture

There are a lot of handshake signals here, with the tx prefix for the transmit part of the signal, and the rx prefix is for the receive part of the signal.

Step 2: create a new baud rate generator file

(1) Input clock 7.3728MHz (64 times 115200). The actual value is 7.377049MHz, which is because the coefficient of the PLL is an integer division, while the error caused by that is not large, and can be adjusted by the stop bit in asynchronous communication. See Figure 10.3.

Fine solution

- A. Implemented with a two-stage PLL for a finer frequency
- B. The stop bit is set to be 2 bits, which can effectively eliminate the error.

This experiment will not deal with the precision. The default input frequency is 7.3728

MHz.

× MegaWizard Plug-In Manager [page 7 of 12]	? ×
altpll	About
1 Parameter 2 PLL Settings Reconfiguration Clocks	IA Summary
dk c0 dk c1 dk c2 dk c3 dk PLL1 <t< th=""><th>CI - Core/External Output Clock Able to implement the requested FLL ✓ Use this dock Clock Tap Settings ● Enter output dock frequency: Clock multiplication factor Clock division factor</th></t<>	CI - Core/External Output Clock Able to implement the requested FLL ✓ Use this dock Clock Tap Settings ● Enter output dock frequency: Clock multiplication factor Clock division factor
Cyctone Yo LP	Clock phase shift 0.00 ps 0.00 Clock duty cycle (%) 50.00 \$ \$ Note: The displayed internal settings of the BL is recommended for use phile Primary clock VCO frequency (MHz) \$
	or the FLL is recommendee for use by advanced users only Image: Constraint of the function of th
	Cancel < Back Next > Finish

Figure 10.3 PLL setting

- C. Supported baud rates are 115200, 57600, 38400, 19200
- D. The default baud rate is 115200

(2) Source file of designing baud rate

// Send baud rate, clock frequency division selection		
wire [8:0] frq_div_tx;		
assign frq_div_tx =	(baud_sel == 2'b00) ? 9'd63:	
	(baud_sel == 2'b01) ? 9'd127:	
	(baud_sel == 2'b10) ? 9'd255:9'd511;	
reg [8:0] count_tx=9'd0;		
always @ (posedge inclk)		

Four different gear positions are set to select the baud rate, corresponding to the step 2, (1). The baud rate of the receiving part is similar to that of the transmitting part.

Step 3: Design the send buffer file *tx_buf*

- (1) 8-bit FIFO, depth is 256, read/write clock separation, write full flag, read empty flag
- (2) Interface and handshake
 - 1) *rst* reset signal
 - 2) wr_clk write clock
 - 3) *tx_clk* send clock
 - 4) 8-bit write data *tx_data*
 - 5) *wr_en* write enable
 - 6) ctrl writes whether the input is a data or a control word
 - 7) rdy buffer ready, can accept the next data frame

Transmit buffer instantiation file

tx_buf			
#(.TX_BIT_LEN(8)	#(.TX_BIT_LEN(8),.STOP_BIT(2))		
tx_buf_inst			
(
.sys_rst	(sys_rst),		
.uart_rst	(uart_rst),		
.wr_clk	(sys_clk),		
.tx_clk	(uart_clk),		
.tx_baud	(tx_baud),		
.tx_wren	(tx_wren),		
.tx_ctrl	(tx_ctrl),		
.tx_datain	(tx_data),		
.tx_done	(tx_done),		
.txbuf_rdy	(txbuf_rdy),		
.tx_out	(tx_out)		
);			

- (1) Serial transmission, interface and handshake file design
 - 1) Interface design
 - A. tx_rdy, send vacancy, can accept new 8-bit data
 - B. tx_en, send data enable, pass to the sending module 8-bit data enable signal
 - C. tx_data, 8-bit data to be sent
 - D. tx_clk, send clock
 - E. tx_baud, send baud rate
 - 2) Instantiation

tx_transmit

#(.DATA_LEN(TX_BIT_LEN),

.STOP_BIT(STOP_BIT)

- (2) Write a testbench file to simulate the transmit module. (*tb_uart*)
- (3) ModelSim simulation waveforms for transmit module. See Figure 10.4.

Figure 10.4 Serial port sending ModelSim simulation waveform

- (4) Extended design (extended content is only reserved for users to think and practice)
 - 1) Design the transmitter to support 5, 6, 7, 8-bit PHY (Port physical layer)
 - 2) Support parity check
- (5) The settings of the above steps involve FIFO, PLL, etc. (Refer to uart_top project file)

The fourth step: UART receiving module design

- (1) Design of rx_phy.v
 - 1) Design strategies and steps
 - Use 8 times sampling: so rx_baud is different from tx_baud, here sampling is rx_band = 8*tx_band
 - B. Adopting judgments to the receiving data

Determine whether the data counter is greater than 4 after the sampling value is

2) Steps to receive data:

counted.

- A. Synchronization: refers to how to find the start bit from the received 0101 (*sync_dtc*)
- B. Receive start bit (start)
- C. Cyclically receive 8-bit data
- D. Receive stop bit (determine whether it is one stop bit or two stop bits)
 - a. Determine if the stop bit is correct
 - i. Correct, jump to step B
 - ii. Incorrect, jump to step A, resynchronize
 - b. Do not judge, jump directly to B, this design adopts the scheme of no judgment

(2) Design of *rx_buf*

- 1) Design strategies and steps
 - A. Add 256 depth, 8-bit fifo
 - a. Read and write clock separation
 - b. Asynchronous clear (internal synchronization)
 - c. Data appears before the *rdreq* in the read port
 - B. Steps:
 - a. Initialization: *fifo*, *rx_phy*
 - b. Wait: FIFO full signal (wrfull) is 0
 - c. Write: Triggered by *rx_phy_byte*, *rx_phy_rdy* of *rx_phy*:

- d. End of writing
- e. Back to step b and continue to wait
- f. *rx_buf.v* source program (Reference to project files)
- g. Receive module simulation

Contents and steps

- i. *tx, rx* loopback test (assign *rx_in* = *tx_out*)
- ii. Continue to use the testbench file in the tx section
- iii. Write the testbench of *rx*
- h. ModelSim simulation. See Figure 10.5.
- i. Reflection and development
 - I. Modify the program to complete the 5, 6, 7, 8-bit design
 - II. Completing the design of the resynchronization when the *start* and *stop* have errors of the receiving end *rx_phy*
 - III. Complete the analysis and packaging of the receiving data frame of *rx_buf*
 - IV. Using multi-sampling to design 180° alignment data sampling method, compare FPGA resources, timing and data recovery effects

Figure 10.5 rx_phy wave form

10.4 Experiment Verification

(1) Hardware interface, FII-PRA040 development board has integrated USB to serial port conversion

- (2) Write a hardware test file
 - 1) Test plan: connect development board CON8 to host USB interface
 - 2) Using test software such as Tera Term, SSCOM3, etc., you can also write a serial communication program (C#, C++, JAVA, Python...)
 - 3) PC sends data in a certain format
 - 4) The test end uses a counter to generate data in a certain format.
 - 5) Write the test program *hw_tb_uart* and instantiate *uart_top* in it.
 - 6) Set *hw_tb_uart* to the top level, instantiate the previous program, and then verify it
- (3) Pin assignments:

Signal Name	Network Label	FPGA Pin	Port Description
Inclk	CLK_50M	G21	Input clock
rst	KEY2	Y6	Reset signal
rx_in	TTL_RX	E16	Serial data received
tx_out	TTL_TX	F15	Serial data transmitted

- (4) Observe the experiment result
 - 1) Observe the data received by the PC. See in Figure 10.6.
 - 2) Observe the data received by the FPGA with SignalTap II

Figure 10.5 Data transmitted by FPGA displayed on the host computer

(5) The receiving part has been skipped here. You are encouraged to try it on your own.

Experiment 11 IIC Protocol Transmission

11.1 Experiment Objective

- (1) Learning the basic principles of asynchronous IIC bus, and the IIC communication protocol
- (2) Master the method of reading and writing EEPROM
- (3) Joint debugging using logic analyzer

11.2 Experiment Implement

- (1) Correctly write a number to any address in the EEPROM (this experiment writes to the register of 8'h03 address) through the FPGA (here changes the written 8-bit data value by (SW7~SW0)). After writing in successfully, read the data as well. The read data is displayed directly on the segment display.
- (2) Program the FPGA and press the left push button to execute the data write into EEPROM operation. Press the right push button to read the data that was just written.
- (3) Determine whether it is correct or not by reading the displayed number on the segment display. If the segment display has the same value as written value, the experiment is successful.
- (4) Analyze the correctness of the internal data with SignalTap II and verify it with the display of the segment display.

11.3 Experiment

11.3.1 Introduction of EEPROM and IIC Protocol

(1) Introduction of EEPROM

EEPROM (Electrically Erasable Programmable Read Only Memory) refers to a charged

erasable programmable read only register. It is a memory chip that does not lose data after turning off power.

On the experiment board, there is an IIC interface EEPROM chip 24LC02 with a capacity of 256 bytes. Users can store some hardware configuration data or user information due to the characteristics that the data is not lost after power-off.

- (2) The overall timing protocol of IIC is as follows
 - 1) Bus idle state: SDA, SCL are high
 - 2) Start of IIC protocol: *SCL* stays high, *SDA* jumps from high level to low level, generating a start signal
 - 3) IIC read and write data stage: including serial input and output of data and response signal issued by data receiver
 - 4) IIC transmission end bit: *SCL* is in high level, *SDA* jumps from low level to high level, and generates an end flag. See Figure 11.1.
 - 5) SDA must remain unchanged when SCL is high. It changes only when SCL is low

11.3.2 Hardware Introduction

Each IIC device has a device address. When some device addresses are shipped from the factory, they are fixed by the manufacturer (the specific data can be found in the manufacturer's data sheet). Some of their higher bits are determined, and the lower bits can be configured by the user according to the requirement. The higher four-bit address of the EEPROM chip 24LC02 used by the develop board has been fixed to 1010 by the component manufacturer. The lower three bits are linked in the develop board as shown below, so the device address is 1010000. See Figure 11.2. EEPROM reads and writes data from the FPGA through the *I2C_SCL* clock line and the *I2C_SDA* data line.

Figure 11.2 EEPROM schematics of IIC device

11.3.3 Introduction to the program

This experiment has two main modules, I2C reading and writing module and LED display module; The first module is mainly introduced here.

module ii	c_com(
inpu	t		clk,
inpu	t		rst_n,
inpu	t	[7:0]	data,
inpu	t		sw1,sw2,
inou	t		scl,
inou	t		sda,
outp	ut reg		iic_done,
outp	ut	[7:0]	dis_data
);			

The first step: establishment of the main program framework

The input 8-bit data is needed to be written into the EEPROM, provided by an 8-bit DIP switch.

Step 2: Create clock *I2C_CLK*

```
[8:0]
                    cnt_delay;
reg
                   scl_r;
reg
                   scl_link ;
reg
always @ (posedge clk or negedge rst_n)
begin
     if (!rst_n)
          cnt_delay <= 9'd0;
     else if (cnt_delay == 9'd499)
          cnt_delay <= 9'd0;
     else
          cnt_delay <= cnt_delay + 1'b1;</pre>
end
always @ (posedge clk or negedge rst_n)
begin
     if (!rst_n)
          cnt <= 3'd5;
     else begin
          case (cnt_delay)
               9'd124: cnt <= 3'd1;
                                           //cnt=1:scl
               9'd249: cnt <= 3'd2;
                                           //cnt=2:scl
                                           //cnt=3:scl
               9'd374: cnt <= 3'd3;
               9'd499: cnt <= 3'd0;
                                           //cnt=0:scl
               default: cnt<=3'd5;</pre>
          endcase
     end
end
`define SCL_POS
                        (cnt==3'd0)
                                            //cnt=0:scl
```

`define SCL_HIG	(cnt==3'd1)	//cnt=1:scl
`define SCL_NEG	(cnt==3'd2)	//cnt=2:scl
`define SCL_LOW	(cnt==3'd3)	//cnt=3:scl
always @ (posedge cl	k or negedge rst_n)	
begin		
if (!rst_n)		
scl_r <= 1'b0;		
else if (cnt == 3'd0)		
scl_r <= 1'b1;		
else if (cnt == 3'd2)		
scl_r <= 1'b	0;	
end		
assign scl = scl_link ?	scl_r: 1'bz ;	

First, use the system 50 MHz clock to get a 100 kHz clock with a period of 10us by frequency division as the transmission clock of the IIC protocol. Then, the rising edge, the high state, the falling edge and the low state of the clock are defined by the counter, prepared for the subsequent data reading and writing and the beginning of the IIC protocol. The last line of code means to define a data valid signal. Only when the signal is high, that is, when the data is valid, the IIC clock is valid again, otherwise it is in high impedance. This is also set according to the IIC transport protocol.

The third step: specific implementation of I2C transmission

`define DEVICE_READ	8'b1010_0001
`define DEVICE_WRITE	8'b1010_0000
`define BYTE_ADDR	8'b0000_0011
parameter IDLE = 4	ł'd0;

parameter	START	L = 4'd1;	
parameter	ADD1	= 4'd2;	
parameter	ACK1	= 4'd3;	
parameter	ADD2	= 4'd4;	
parameter	ACK2	= 4'd5;	
parameter	START	2 = 4'd6;	
parameter	ADD3	= 4'd7;	
parameter	ACK3	= 4'd8;	
parameter	DATA	= 4'd9;	
parameter	ACK4	= 4'd10;	
parameter	STOP1	= 4'd11;	
parameter	STOP2	= 4'd12;	
reg [7:0] d	o_r;	
reg [7:0] re	ad_data;	
reg [3:0] cs	tate;	
reg	so	la_r;	
reg	so	la_link;	
reg [3:0] n	um;	
always @ (always @ (posedge clk or negedge rst_n)		
begin			
if (!rst	if (!rst_n) begin		
c	state	<= IDLE;	
S	da_r	<= 1'b1;	
S	cl_link	<= 1'b1;	
S	da_link	<= 1'b1;	
r	ium	<= 4'd0;	

```
read_data
                   <= 8'b0000_0000;
    cnt_5ms
                   <= 20'h00000;
    iic_done <= 1'b0;</pre>
end
else case (cstate)
    IDLE :
    begin
         sda_link <= 1'b1;</pre>
         scl_link <= 1'b1;</pre>
         iic_done <= 1'b0;</pre>
         if (sw1_r || sw2_r) begin
              db_r<= `DEVICE_WRITE;
              cstate <= START1;
         end
         else cstate <= IDLE;
    end
    START1 :
     begin
         if (`SCL_HIG) begin
              sda_link <= 1'b1;</pre>
              sda_r
                           <= 1'b0;
              num
                             <= 4'd0;
                             <= ADD1;
              cstate
         end
         else cstate <= START1;
    end
    ADD1
             :
     begin
```

```
if (`SCL_LOW) begin
```

```
if (num == 4'd8) begin
              num
                            <= 4'd0;
              sda_r
                            <= 1'b1;
              sda_link <= 1'b0;</pre>
              cstate
                            <= ACK1;
         end
         else begin
                            <= ADD1;
              cstate
              num
                            <= num + 1'b1;
              case (num)
                   4'd0 : sda_r <= db_r[7];
                   4'd1 : sda_r <= db_r[6];
                   4'd2 : sda_r <= db_r[5];
                   4'd3 : sda_r <= db_r[4];
                   4'd4 : sda_r <= db_r[3];
                   4'd5 : sda_r <= db_r[2];
                   4'd6 : sda_r <= db_r[1];
                   4'd7 : sda_r <= db_r[0];
                   default : ;
              endcase
         end
    end
    else cstate <= ADD1;
end
ACK1
        :
begin
    if (`SCL_NEG) begin
```

```
cstate
                   <= ADD2;
          db_r<= `BYTE_ADDR;
    end
    else cstate
                 <= ACK1;
end
ADD2
         :
begin
    if (`SCL_LOW) begin
          if (num == 4'd8) begin
              num
                             <= 4'd0;
              sda_r
                             <= 1'b1;
              sda_link <= 1'b0;</pre>
                             <= ACK2;
              cstate
          end
          else begin
              sda_link <= 1'b1;</pre>
              num <= num+1'b1;
              case (num)
                   4'd0 : sda_r <= db_r[7];
                   4'd1 : sda_r <= db_r[6];
                   4'd2 : sda_r <= db_r[5];
                   4'd3 : sda_r <= db_r[4];
                   4'd4 : sda_r <= db_r[3];
                   4'd5 : sda_r <= db_r[2];
                   4'd6 : sda_r <= db_r[1];
                   4'd7 : sda_r <= db_r[0];
                   default : ;
              endcase
```

```
cstate <= ADD2;
             end
         end
    else cstate <= ADD2;
end
ACK2
       :
begin
    if (`SCL_NEG) begin
         if (sw1_r) begin
             cstate <= DATA;
             db_r<= data_tep;
        end
         else if (sw2_r) begin
             db_r<= `DEVICE_READ;
             cstate <= START2;
         end
    end
    else cstate <= ACK2;
end
START2 :
begin
    if (`SCL_LOW) begin
        sda_link <= 1'b1;</pre>
        sda_r <= 1'b1;
        cstate <= START2;
    end
    else if (`SCL_HIG) begin
                      <= 1'b0;
        sda_r
```
```
<= ADD3;
         cstate
    end
    else cstate
                        <= START2;
end
ADD3
        :
begin
    if (`SCL_LOW) begin
         if (num == 4'd8) begin
              num
                            <= 4'd0;
              sda_r
                            <= 1'b1;
              sda_link <= 1'b0;</pre>
              cstate
                             <= ACK3;
         end
         else begin
              num <= num + 1'b1;
              case (num)
                   4'd0 : sda_r <= db_r[7];
                   4'd1 : sda_r <= db_r[6];
                   4'd2 : sda_r <= db_r[5];
                   4'd3 : sda_r <= db_r[4];
                   4'd4 : sda_r <= db_r[3];
                   4'd5 : sda_r <= db_r[2];
                   4'd6 : sda_r <= db_r[1];
                   4'd7 : sda_r <= db_r[0];
                   default:;
              endcase
         end
    end
```

```
else cstate <= ADD3;
end
АСКЗ
          :
begin
    if (`SCL_NEG) begin
          cstate
                        <= DATA;
         sda_link <= 1'b0;</pre>
    end
    else cstate
                        <= ACK3;
end
DATA
          :
begin
    if (sw2_r) begin
          if (num <= 4'd7) begin
              cstate <= DATA;
              if(`SCL_HIG) begin
                   num <= num + 1'b1;
                   case (num)
                        4'd0 : read_data[7] <= sda;
                        4'd1 : read_data[6] <= sda;
                        4'd2 : read_data[5] <= sda;
                        4'd3 : read_data[4] <= sda;
                        4'd4 : read_data[3] <= sda;
                        4'd5 : read_data[2] <= sda;
                        4'd6 : read_data[1] <= sda;
                        4'd7 : read_data[0] <= sda;
                        default: ;
                   endcase
```

```
end
     end
     else if((`SCL_LOW) && (num == 4'd8)) begin
         num
                   <= 4'd0;
                   <= ACK4;
         cstate
     end
     else cstate
                   <= DATA;
end
else if (sw1_r) begin
    sda_link <= 1'b1;</pre>
     if (num <= 4'd7) begin
         cstate <= DATA;
         if (`SCL_LOW) begin
               sda_link <= 1'b1;</pre>
               num
                             <= num + 1'b1;
               case (num)
                   4'd0:sda_r <= db_r[7];
                   4'd1:sda_r <= db_r[6];
                   4'd2 : sda_r <= db_r[5];
                   4'd3 : sda_r <= db_r[4];
                   4'd4 : sda_r <= db_r[3];
                   4'd5 : sda_r <= db_r[2];
                   4'd6 : sda_r <= db_r[1];
                   4'd7 : sda_r <= db_r[0];
                   default:;
               endcase
         end
     end
```

```
else if ((`SCL_LOW) && (num==4'd8)) begin
            num
                       <= 4'd0;
            sda_r <= 1'b1;
            sda_link <= 1'b0;</pre>
            cstate <= ACK4;
        end
        else cstate <= DATA;
    end
end
ACK4 :
begin
    if (`SCL_NEG)
        cstate <= STOP1;
    else
        cstate <= ACK4;
end
STOP1 :
begin
    if (`SCL_LOW) begin
        sda_link <= 1'b1;</pre>
        sda_r <= 1'b0;
        cstate <= STOP1;
    end
    else if (`SCL_HIG) begin
        sda_r <= 1'b1;
        cstate <= STOP2;
    end
                    <= STOP1;
    else cstate
```

```
end
          STOP2
                    :
          begin
               if (`SCL_NEG) begin
                    sda_link <= 1'b0;</pre>
                    scl_link <= 1'b0;</pre>
               end
               else if (cnt_5ms==20'h3fffc) begin
                    cnt_5ms
                                   <= 20'h00000;
                    iic_done <= 1;</pre>
                                   <= IDLE;
                    cstate
               end
               else begin
                    cstate
                                   <= STOP2;
                                   <= cnt_5ms + 1'b1;
                    cnt_5ms
               end
          end
          default: cstate <= IDLE;
     endcase
end
```

The entire process is implemented using a state machine. When reset, it is idle state, while data line *sda_r* is pulled high, clock and data are both valid, i.e. *scl_link*, *sda_link* are high; counter *num* is cleared and *read_data* is 0. 5ms delay counter is cleared, IIC transmission end signal *lic_done* is low thus invalid.

- (1) IDLE state: When receiving the read enable or write enable signal sw1_r || sw2_r, assign the write control word to the intermediate variable db_r <= `DEVICE_WRITE, and jump to the start state START1;</p>
- (2) START1 state: pull the data line low when the clock signal is high, generating the start signal of IIC transmission, and jump to the device address state ADD1;
- (3) Device address status ADD1: After the write control word (device address plus one '0'

bit) is transmitted according to MSB (high order priority), the *sda_link* is pulled low causing data bus in a high impedance state, and jump to the first response state ACK1, waiting for the response signal from the slave (EEPROM).

- (4) The first response status ACK1: If the data line is pulled low, it proves that the slave receives the data normally, otherwise the data is not written into EEPROM, and then the rewriting or stopping is decided by the user. There is no temporary judgment and processing here, jump directly to the write register address state ADD2, and assign the address BYTE_ADDR written to the intermediate variable (this experiment writes the data into the third register, i.e. BYTE_ADDR = 0000_0011)
- (5) Register address status ADD2: Same as (3), it transfers register address to slave and jump to second response status ACK2
- (6) The second response state ACK2: At this time, it is urgent to judge. If it is the write state sw1, it jumps to the data transfer state DATA, and at the same time assigns the written data to the intermediate variable. If it is the read state sw2, it jumps to the second start state START2 and assign the read control word to the intermediate variable.
- (7) The second start state START2: it produces a start signal identical to (2) and jumps to the read register address state ADD3
- (8) Read register address status ADD3: it jumps to the third response status ACK3S after the transfer of the register address that needs to be read out
- (9) The third response state ACK3: it jumps directly to the data transfer state DATA. In the read state, the data to be read is directly read out immediately following the register address.
- (10) Data transfer status DATA: it needs to be judged here. If it is the read status, the data will be directly output. If it is the write status, the data to be written will be transferred to the data line SDA. Both states need to jump to the fourth response state. ACK4
- (11) The fourth response status ACK4: it direct jumps to stop transmission STOP1
- (12) Stop transmission STOP1: it pulls up data line when the clock line is high, generating a stop signal, and jumps to the transfer completion status STOP2
- (13) Transfer completion status STOP2: it releases all clock lines and data lines, and after a 5ms delay, returns to the IDLE state to wait for the next transfer instruction. This is because EEPROM stipulates that the interval between two consecutives read and write operations must not be less than 5ms.

11.4 Experiment Verification

The first step: pin assignments

Signal Name	Network Label	FPGA Pin	Port Description
clk	CLK_50M	G21	System clock 50 MHz
rst_n	PB3	Y6	Reset
sm_db[0]	SEG_PA	B15	Segment a
sm_db [1]	SEG_PB	E14	Segment b
sm_db [2]	SEG_PC	D15	Segment c
sm_db [3]	SEG_PD	C15	Segment d
sm_db [4]	SEG_PE	F13	Segment e
sm_db [5]	SEG_PF	E11	Segment f
sm_db [6]	SEG_PG	B16	Segment g
sm_db [7]	SEG_DP	A16	Segment h
sm_cs1_n	SEG_3V3_D1	D19	Segment 1
sm_cs2_n	SEG_3V3_D0	F14	Segment 0
data [0]	SW0	U11	Switch input
data [1]	SW1	V11	Switch input
data [2]	SW2	U10	Switch input
data [3]	SW3	V10	Switch input
data [4]	SW4	V9	Switch input
data [5]	SW5	W8	Switch input
data [6]	SW6	Y8	Switch input
data [7]	SW7	W6	Switch input
sw1	PB4	AB4	Write EEPROM button
sw2	PB6	AA4	Read EEPROM button
scl	I2C_SCL	D13	EEPROM clock line
sda	I2C_SDA	C13	EEPROM data line

Table 11.1 IIC protocol transmission experiment pin mapping

Step 2: board verification

After the pin assignment is completed, the compilation is performed, and the board is verified after passing.

After the board is programmed, press the LEFT key to write the 8-bit value represented by SW7~SW0 to EEPROM. Then press the RIGHT key to read the value from the write position. Observe the consistency between the value displayed on the segment display on the experiment board and the value written in the 8'h03 register of the EEPROM address (SW7~SW0) (this experiment writes 8'h34). The read value is displayed on the segment display. The experimental phenomenon is shown in Figure 11.3.

Figure 11.3 Observe experiment result

Experiment 12 AD, DA Experiment

12.1 Experiment Objective

Since in the real world, all naturally occurring signals are analog signals, and all that are read and processed in actual engineering are digital signals. There is a process of mutual conversion between natural and industrial signals (digital-to-analog conversion: DAC, analog-to-digital conversion: ADC). The purpose of this experiment is as follows:

- (1) Learn about the theory of AD conversion
- (2) Review the knowledge of the IIC protocol learned in the previous experiment and write the data into PCF8591 on the development board.
- (3) Read the value of AD acquisition from PCF8591, and convert the value obtained into actual value, display it with segment display

12.2 Experiment Implement

- (1) The ADC port of the chip is used for analog-to-digital conversion. The chip is correctly configured. Three variable (potentiometer, photoresistor, thermistor) voltages on the development board are collected, and the collected voltage value is displayed through the segment display.
- (2) Board downloading verification, compared with resistance characteristics, verify the correctness of the results

12.3 Experiment

12.3.1 Introduction to AD Conversion Chip PCF8591

The PCF8591 is a monolithically integrated, individually powered, low power consuming, 8-

bit CMOS data acquisition device. The PCF8591 has four analog inputs, one analog output, and one serial IIC bus interface. The three address pins A0, A1 and A2 of the PCF8591 can be used for hardware address programming. The address, control signals and data signals of the input and output on the PCF8591 device are transmitted serially via the two-wire bidirectional IIC bus. Please refer to the previous experiment 11 for the contents of the IIC bus protocol. After the device address information and the read/write control word are sent, the control word information is sent.

Figure 12.1 PCF8591 address

The specific control word information is shown in Figure 12.1. Digit 1 - digit 0 is used for four channel settings, digit 2 is for automatic gain selection, '1' is valid. Digit 5 - digit 4 determines analog input selection. Digit 6 is analog output enable. Digit 7 and digit 3 are reserved to be '0'. The second byte sent to PCF8951 is stored in the control register to control the device functionality. The upper nibble of the control register is used to allow the analog output to be programmed as a single-ended or differential input. The lower nibble selects an analog input channel defined by the high nibble. If the auto increment flag is set to 1, the channel number will be automatically incremented after each A/D conversion.

In this experiment, the input channel is selected as the AD acquisition input channel by using the DIP switch (SW1, SW0). The specific channel information is shown in Table 12.1. The control information is configured as 8'h40, which is the analog output, and defaults to "00" channels, which means that the photoresistor voltage value is displayed by default.

SW1, SW0	Channel Selection	Acquisition Object
00	0	Voltage of photoresistor
01	1	Voltage of thermistor
10	2	Voltage of potentiometer

Table	12.1	Channel	information
i u o i c	****	channer	monution

12.3.2 Hardware Design

Figure 12.2 Schematics of the AD/DA converter

The schematics of AD/DA conversion using PCF8591 is shown in Figure 12.2. The IIC bus goes through two pull-up resistors and pulls high when not working. *AO, A1, A2* are grounded, so the device address is 7'b1010000, the analog input channel *AINO* is connected to the photoresistor, *AIN1* is connected to the thermistor, and *AIN3* is connected to the potentiometer. When the channel is selected, FPGA will read the value in PCF8591 through the data bus *ADDA_I2C_SLC* for processing.

Introduction to the Program

This experiment also uses the IIC bus to control the PCF8951 chip, so the program is basically the same as Experiment 11. Only parts difference from Experiment 11 are indicated here.

```
+ read_data_temp[15];
always @ (posedge clk)
     dis_data <= dis_data_temp >> 4;
integer
           i;
always @ (posedge clk or negedge rst_n)
begin
     if (!rst_n) begin
          for (i=0;i<16;i=i+1)
               read_data_temp[i] <= 8'h00;
     end
     else if (iic_done) begin
          for (i=0;i<15;i=i+1)
               read_data_temp[i+1] <= read_data_temp[i];</pre>
               read_data_temp[0] <= read_data ;</pre>
          end
     else begin
          for (i=0;i<16;i=i+1)
               read_data_temp[i] <= read_data_temp[i];</pre>
     end
end
```

The role of this part is that when the chip continuously collects the voltage value across the resistor, due to a series of unstable factors, the voltage value will be unstable, so the output value will have a large error, so 16 sets of data is collected each time, then gets averaged, and the result is output as the voltage value across the resistor at this time. Then, by the change of the voltage value, it is possible to judge the regular pattern. Such as photoresistor, the greater the light intensity, the smaller the voltage value, the smaller the resistance value, satisfying the photoresistor characteristics; the higher the thermistor temperature, the smaller the voltage value, the smaller the resistance, satisfying the photoresistor characteristics; the potentiometer rotates clockwise, and the voltage increases, the resistance increases; counterclockwise rotating decreases the voltage, and the resistance decreases.

The maximum output of the AD chip is an 8-bit digital quantity, but in fact it is not the required voltage value. It quantifies the voltage value of the range into 256 portions (8-bit binary number can represent 256 decimal numbers), so further calculations and conversions needs to be applied when displaying on the segment display.

parame	ter V_REF =	= 12'd3300;			
reg	[19:0]	num_t;			
reg	[19:0]	num1;			
wire	[3:0]	data0;			
wire	[3:0]	data1;			
wire	[3:0]	data2;			
wire	[3:0]	data3;			
wire	[3:0]	data4;			
wire	[3:0]	data5;			
assign	data5 = num1 ,	/ 17'd100000;			
assign	data4 = num1 ,	/ 14'd10000 % 4'd10;			
assign	data3 = num1 ,	/ 10'd1000 % 4'd10 ;			
assign	data2 = num1 ,	/ 7'd100 % 4'd10 ;			
assign	data1 = num1 ,	/ 4'd10 % 4'd10 ;			
assign	data0 = num1	% 4'd10;			
always @ (p	osedge clk)				
num_t <=	V_REF * dis_dat	ta;			
always @(pc	osedge clk or neg	gedge rst_n)			
begin					
if (!rst_	if (!rst_n) begin				
nu	m1 <= 20'd0;				
end					
else					

```
num1 <= num_t >> 4'd8;
```

end

VCC is 3.3V, so the maximum resistance voltage is 3.3V. The 8-bit data *dis_data* is multiplied by 3300 and assigned to *numt* by 1000 times, which is convenient for display and observation. The *numt* is further reduced by 256 times (left shifting 8 bits) to *num1*, corresponding to 256 quantitized portions of PCF8951. *num1* at this time is 1000 times the voltage value of two ends of the resistor. Display each digit on the segment display, in the order of high to low (data5 to data0) and add the decimal point (data3) to digit of thousands. At this time, the value displayed by the segment display is the voltage across the resistor value and correct to 3 decimal places.

12.4 Experiment Verification

The first step: assign the pin

Signal Name	Network Label	FPGA Pin	Port Description
clk	CLK_50M	G21	System clock 50 MHz
rst_n	PB3	Y6	Reset
sm_db[0]	SEG_PA	B15	Segment a
sm_db [1]	SEG_PB	E14	Segment b
sm_db [2]	SEG_PC	D15	Segment c
sm_db [3]	SEG_PD	C15	Segment d
sm_db [4]	SEG_PE	F13	Segment e
sm_db [5]	SEG_PF	E11	Segment f
sm_db [6]	SEG_PG	B16	Segment g
sm_db [7]	SEG_DP	A16	Segment h
sel[0]	SEG_3V3_D0	F14	Bit selection 0
sel[1]	SEG_3V3_D1	D19	Bit selection 1
sel[2]	SEG_3V3_D2	E15	Bit selection 2
sel[3]	SEG_3V3_D3	E13	Bit selection 3

Table 12.2 AD conversion experiment pin mapping

sel[4]	SEG_3V3_D4	F11	Bit selection 4
sel[5]	SEG_3V3_D5	R12	Bit selection 5
data[0]	SW0	U11	Swicth input
data[1]	SW1	V11	Swicth input
data[2]	SW2	U10	Swicth input
data[3]	SW3	V10	Swicth input
data[4]	SW4	V9	Swicth input
data[5]	SW5	W8	Swicth input
data[6]	SW6	Y8	Swicth input
data[7]	SW7	W6	Swicth input
scl	ADDA_I2C_SCL	C20	PCF8591 clock line
sda	ADDA_I2C_SDA	D20	PCF8591 data line

Step 2: board verification

After the pin assignment is completed, the compilation is performed, and board is verified after passing.

Under the default state, that is, the channel selection is "00", the segment display shows the current ambient brightness state, the voltage value across the photoresistor is 2.010V, as shown in Figure 12.3.

Figure 12.3 Photoresistor test phenomenon

When the channel selection is "01", the segment display shows the current ambient temperature, the voltage across the thermistor is 2.926V, as shown in Figure 12.4.

Figure 12.4 Thermistor experiment phenomenon

When the channel is selected as "10", the segment display shows the current resistance value, and the voltage across the potentiometer is 1.456 V, as shown in Figure 12.5.

Figure 12.5 Potentiometer experiment phenomenon

Experiment 13 HDMI Display

13.1 Experiment Objective

- (1) Review IIC protocol
- (2) Review EEPROM read and write
- (3) Learn HDMI principle

13.2 Experiment Implement

Display different image content on the screen through the HDMI.

13.3 Experiment

13.3.1 Introduction to HDMI and ADV7511 Chip

Image display processing has always been the focus of FPGA research. At present, the image display mode is also developing. The image display interface is also gradually transitioning from the old VGA interface to the new DVI or HDMI interface. HDMI (High Definition Multimedia Interface) is a digital video/audio interface technology. It is a dedicated digital interface for image transmission. It can transmit audio and video signals at the same time.

The ADV7511 is a chip that converts FPGA digital signal to HDMI signal following VESA standard. For more details, see the related chip manual. Among them, "ADV7511 Programming Guide" and "ADV7511 Hardware Users Guide" are the most important. The registers of the ADV7511 can be configured by referring those documents.

ADV7511 Register Configuration Description: The bus inputs D0-D3, D12-D15, and D24-D27 of the ADV7511 have no input, and each bit of data is in 8-bit mode. Directly set 0x15 [3:0]) 0x0 data, 0x16 [3:2] data does not need to be set for its mode. Set [5:4] of 0X16 to 11for 8-bit data and keep the default values for the other digits. 0x17[1] refers to the ratio of the length to the width of the image. It can be set to 0 or 1. The actual LCD screen will not change according to the data but will automatically stretch the full screen mode according to the LCD's own settings.

0x18[7] is the way to start the color range stretching. The design is that RGB maps directly to RGB, so it can be disabled directly. 0X18[6:5] is also invalid currently. 0XAF [1] is to set HDMI or DVI mode, the most direct point of HDMI than DVI is that HDMI can send digital audio data and encrypted data content. This experiment only needs to Display the picture, and it can be set directly to DVI mode. Set 0XAF [7] to 0 to turn off HDMI encryption. Due to GCCD, deep color encryption data is not applicable, so the GC option is turned off. 0x4c register does not need to be set as well. Other sound data setting can be ignored here for DVI output mode. After writing these registers, the image can be displayed successfully.

13.3.2 Hardware Design

The onboard HDMI module consists of an HDMI interface and an ADV7511 chip. The physical photo is shown in Figure 13.1. The schematics is shown in Figure 13.2.

Figure 13.1 HDMI interface and ADV7511 chip physical photo

Figure 13.2 Schematics of HDMI

ADV7511 chip is set through the IIC bus and send the picture information to be displayed to the chip through HDMI_D0 to HDMI_D23, and control signals HDMI_HSYNC and HDMI_VSYNC and the clock signal HDMI_CLK, which are transmitted to the PC through the HDMI interface after being processed internally by the chip.

13.3.3 Introduction to the Program

The configuration part of the ADV7511 chip is carried out using the IIC protocol, with reference to Experiment 11 and Experiment 12. A brief introduction to the data processing section is now available.

module hdmi_te	st (
input		rst_n,		
input		clk_in,		
input		key1,		
output		vga_hs,		
output		vga_vs,		
output	[7:0]	vga_r,		

0	utput	[7:0]	vga_g,
0	utput	[7:0]	vga_b,
0	utput		vga_clk,
in	nout		scl,
in	nout		sda,
0	utput		en
);			

The FPGA configures the ADV7511 chip through the IIC bus (clock line *scl*, data line *sda*). After the configuration is completed, the output image information needs to be determined. Taking the 1080P (1920*1080) image format as an example, it outputs data signal rgb_r (red component), rgb_g (green component), rgb_b (blue component), a line sync signal rgb_hs , a field sync signal rgb_vs , and a clock rgb_clk signal. Each pixel is formed by a combination of three color components. Each row of 1920 pixels is filled with color information in a certain order (from left to right) and begin to fill the next line after completing one line, in a certain order (from top to bottom) to finish 1080 lines, so that one frame of image information is completed. The image information of each frame is determined by this horizontal and vertical scanning, and then transmitted to the ADV7511 for processing. The timing diagram of the horizontal and vertical scan is shown in Figure 13.3, Figure 13.4.

Figure 13.4 Vertical synchronization

The second step: data definition of 1080p image timing generation

Horizontal line	e scan para	ameter setting 19	20*1080 60 Hz	clock 130 MHz
parameter Lin	ePeriod	= 2000;	// Line period	
parameter H_	SyncPulse	= 12;	// Line sync pul	se (Sync a)
parameter H_	BackPorch	n = 40;	// Display back	edge (Back porch b)
parameter H_	ActivePix	= 1920;	// Display interval	c
parameter H_	FrontPorc	h= 28;	// Display front	edge (Front porch d)
parameter Hd	e_start	= 52;		
parameter Hd	e_end	= 1972;		
Vertical scan p	arameter	setting 1920*108	80 60Hz	
parameter Fra	mePeriod	= 1105;	//Frame period	
parameter V_	SyncPulse	= 4;	// Vertical sync p	ulse (Sync o)
parameter V_	BackPorch	n = 18;	// Display trailing	g edge (Back porch p)
parameter V_	ActivePix	= 1080;	//Display interva	lq
parameter V_	FrontPorcl	h= 3;	// Display front e	dge (Front porch r)
parameter Vd	e_start	= 22;		
parameter Vd	e_end	= 1102;		
reg	[12:0]	x_cnt;		
reg	[10:0]	y_cnt;		
reg	[23:0]	grid_data_1;		
reg	[23:0]	grid_data_2;		
reg	[23:0]	bar_data;		
reg	[3:0]	rgb_dis_mode;		
reg	[7:0]	rgb_r_reg;		
reg	[7:0]	rgb_g_reg;		
reg	[7:0]	rgb_b_reg;		
reg		hsync_r;		
reg		vsync_r;		

reg		hsync_de;	
reg		vsync_de;	
reg	[15:0]	key1_counter;	//Button
wire		locked;	
reg		rst;	
wire	[12:0]	bar_interval;	
assign bar_int	terval = H_	_ActivePix[15: 3];	//Color strip width

The third step: Generate display content

```
always @ (posedge rgb_clk)
begin

if (rst)
    hsync_r <= 1'b1;
else if (x_cnt == LinePeriod)
    hsync_r <= 1'b0;
else if (x_cnt == H_SyncPulse)
    hsync_r <= 1'b1;
if (rst)
    hsync_de <= 1'b0;
else if (x_cnt == Hde_start)
    hsync_de <= 1'b1;
else if (x_cnt == Hde_end)
    hsync_de <= 1'b0;
end</pre>
```

```
always @ (posedge vga_clk)
begin
    if (rst)
         y_cnt <= 1'b1;
    else if (x_cnt == LinePeriod) begin
         if (y_cnt == FramePeriod)
              y_cnt <= 1'b1;
         else
              y_cnt <= y_cnt + 1'b1;
    end
end
always @ (posedge rgb_clk)
begin
    if (rst)
         vsync_r <= 1'b1;
    else if ((y_cnt == FramePeriod) &(x_cnt == LinePeriod))
         vsync_r <= 1'b0;
    else if ((y_cnt == V_SyncPulse) &(x_cnt == LinePeriod))
         vsync_r <= 1'b1;
    if (rst)
         vsync_de <= 1'b0;
    else if ((y_cnt == Vde_start) & (x_cnt == LinePeriod))
         vsync_de <= 1'b1;
    else if ((y_cnt == Vde_end) & (x_cnt == LinePeriod))
         vsync_de <= 1'b0;
end
```

```
assign en = hsync_de & vsync_de;
always @(posedge rgb_clk)
begin
     if ((x_cnt[4]==1'b1) ^ (y_cnt[4]==1'b1))
          grid_data_1 <= 24'h000000;
     else
          grid_data_1<= 24'hffffff;</pre>
     if ((x_cnt[6] == 1'b1) ^ (y_cnt[6] == 1'b1))
          grid_data_2 <=24'h000000;
     else
          grid_data_2 <= 24'hffffff;</pre>
end
always @ (posedge rgb _clk)
begin
     if (x_cnt==Hde_start)
          bar_data <= 24'hff0000;
                                                              // Red strip
     else if (x_cnt == Hde_start + bar_interval)
          bar_data <= 24'h00ff00;
                                                             // Green strip
     else if (x_cnt == Hde_start + bar_interval*2)
          bar_data <= 24'h0000ff;
                                                              // Blue strip
     else if (x_cnt == Hde_start + bar_interval*3)
                                                              // Purple strip
          bar_data <= 24'hff00ff;
     else if (x_cnt == Hde_start + bar_interval*4)
          bar_data <= 24'hffff00;</pre>
                                                              // Yellow strip
     else if (x_cnt == Hde_start + bar_interval*5)
          bar_data <= 24'h00ffff;</pre>
                                                              // Light blue strip
```

```
else if (x_cnt == Hde_start + bar_interval*6)
          bar_data <= 24'hffffff;</pre>
                                                               // White strip
     else if (x_cnt == Hde_start + bar_interval*7)
          bar_data <= 24'hff8000;
                                                               // Orange strip
     else if (x_cnt == Hde_start + bar_interval*8)
          bar_data <= 24'h000000;
                                                              //Black strip
end
always @ (posedge vga_clk)
begin
     if (rst) begin
          rgb_r_reg <= 0;</pre>
          rgb_g_reg <= 0;
          rgb_b_reg <= 0;</pre>
     end
     else case (vga_dis_mode)
          4'b0000 :
                                  // Display all black
          begin
               rgb_r_reg <= 0;
               rgb_g_reg <= 0;</pre>
               rgb_b_reg <= 0;</pre>
          end
          4'b0001 :
                                  // Display all white
          begin
               rgb_r_reg <= 8'hff;
               rgb_g_reg <= 8'hff;</pre>
               rgb_b_reg <= 8'hff;
          end
```

```
4'b0010 :
                       // Display all red
begin
     rgb_r_reg <= 8'hff;</pre>
     rgb_g_reg <= 0;
     rgb_b_reg <= 0;</pre>
end
4'b0011 :
                        // Display all green
begin
     rgb_r_reg <= 0;
     rgb_g_reg <= 8'hff;</pre>
     rgb_b_reg <= 0;</pre>
end
4'b0100 :
                        // Display all blue
begin
     rgb_r_reg <= 0;</pre>
     rgb_g_reg <= 0;
     rgb_b_reg <= 8'hff;</pre>
end
4'b0101 :
                        // Display square 1
begin
     rgb_r_reg <= grid_data_1[23:16];</pre>
     rgb_g_reg <= grid_data_1[15:8];</pre>
     rgb_b_reg <= grid_data_1[7:0];</pre>
end
4'b0110 :
                        // Display square 2
begin
     rgb_r_reg <= grid_data_2[23:16];</pre>
     rgb_g_reg <= grid_data_2[15:8];</pre>
```

```
rgb_b_reg <= grid_data_2[7:0];</pre>
end
4'b0111 :
                      // Display horizontal gradient
begin
    rgb_r_reg <= x_cnt[10:3];
     rgb_g_reg <= x_cnt[10:3];
    rgb_b_reg <= x_cnt[10:3];
end
4'b1000 :
                       // Display vertical gradient
begin
     rgb_r_reg <= y_cnt[10:3];
    rgb_g_reg <= y_cnt[10:3];
     rgb_b_reg <= y_cnt[10:3];
end
4'b1001 :
                     // Display red horizontal gradient
begin
    rgb_r_reg <= x_cnt[10:3];
     rgb_g_reg <= 0;</pre>
    rgb_b_reg <= 0;</pre>
end
4'b1010 :
                       // Display green horizontal gradient
begin
     rgb_r_reg <= 0;</pre>
     rgb_g_reg <= x_cnt[10:3];
    rgb_b_reg <= 0;</pre>
end
4'b1011 :
                       // Display blue horizontal gradient
begin
```

```
rgb_r_reg <= 0;</pre>
              rgb_g_reg <= 0;</pre>
              rgb_b_reg <= x_cnt[10:3];
         end
          4'b1100 :
                                // Display colorful strips
         begin
              rgb_r_reg <= bar_data[23:16];</pre>
              rgb_g_reg <= bar_data[15:8];</pre>
              rgb_b_reg <= bar_data[7:0];</pre>
         end
         default : // Display all white
         begin
              rgb_r_reg <= 8'hff;
              rgb_g_reg <= 8'hff;</pre>
              rgb_b_reg <= 8'hff;
          end
    endcase
end
    assign rgb_hs = hsync_r;
    assign rgb_vs = vsync_r;
    assign rgb_r = (hsync_de & vsync_de) ? rgb_r_reg : 8'h00;
    assign rgb_g = (hsync_de & vsync_de) ? rgb_g_reg : 8'b00;
    assign rgb_b = (hsync_de & vsync_de) ? rgb_b_reg : 8'h00;
always @(posedge rgb_clk)
begin
    if (key1 == 1'b1)
         key1_counter <= 0;</pre>
    else if ((key1 == 1'b0) & (key1_counter <= 16'd130000))
```

When the button is pressed, a key1 signal will be input, and the content displayed on the screen will change according to the change of *vga_dis_mode*, and the corresponding picture content will be displayed.

13.4 Experiment Verification

The first step: pin assignment

Table 13.1 HDMI Experiment Pin Mapping

Signal Name	Network Label	FPGA Pin	Port Description
clk	CLK_50M	G21	System clock 50 MHz
rst_n	PB3	Y6	Reset
en	HDMI_R_DE	A8	Enable
scl	I2C_SCL	D13	IIC clock line
sda	I2C_SDA	C13	IIC data line
key1	PB2	V5	Switch display content
vga_clk	HDMI_R_CLK	E5	HDMI clock
vga_hs	HDMI_R_HS	В9	Horizontal sync signal
vg_vs	HDMI_R_VS	A9	Vertical sync signal
vga_b[0]	HDMI_R_D0	Α7	
vga_b[1]	HDMI_R_D1	B8	
vga_b[2]	HDMI_R_D2	E9	
vga_b[3]	HDMI_R_D3	В7	Blue output
vga_b[4]	HDMI_R_D4	C8	

vga_b[5]	HDMI_R_D5	C6	
vga_b[6]	HDMI_R_D6	F8	
vga_b[7]	HDMI_R_D7	B6	
vga_g[0]	HDMI_R_D8	A5	
vga_g[1]	HDMI_R_D9	С7	
vga_g[2]	HDMI_R_D10	D7	
vga_g[3]	HDMI_R_D11	B5	Green output
vga_g[4]	HDMI_R_D12	C6	
vga_g[5]	HDMI_R_D13	A4	
vga_g[6]	HDMI_R_D14	D6	
vga_g[7]	HDMI_R_D15	B4	
vga_r[0]	HDMI_R_D16	E7	
vga_r[1]	HDMI_R_D17	A3	
vga_r[2]	HDMI_R_D18	C4	
vga_r[3]	HDMI_R_D19	B3	Red output
vga_r[4]	HDMI_R_D20	С3	
vga_r[5]	HDMI_R_D21	F7	
vga_r[6]	HDMI_R_D22	F9	
vga_r[7]	HDMI_R_D23	G7	

The second step: board verification

After the pin assignment is completed, the compilation is performed, and the development board is programmed.

Press the push button and the display content changes accordingly. The experimental phenomenon is shown in the figure below (only a few are listed).

Figure 13.5 HDMI display (all white)

Figure 13.6 HDMI display (square)

Figure 13.7 HDMI display (color strip)

Experiment 14 Ethernet

14.1 Experiment Objective

- (1) Understand what Ethernet is and how it works
- (2) Familiar with the relationship between different interface types (MII, GMII, RGMII) and their advantages and disadvantages (FII-PRA040 uses RGMII)
- (3) Combine the development board to complete the transmission and reception of data and verify it

14.2 Experiment Implement

- (1) Perform a loopback test to check if the hardware is working properly.
- (2) Perform data receiving verification
- (3) Perform data transmission verification

14.3 Experiment

14.3.1 Introduction to Experiment Principle

Ethernet is a baseband LAN technology. Ethernet communication is a communication method that uses coaxial cable as a network media and uses carrier multi-access and collision detection mechanisms. The data transmission rate reaches 1 Gbit/s, which can satisfy the need for data transfer of non-persistent networks. As an interconnected interface, the Ethernet interface is very widely used. There are many types of Gigabit Ethernet MII interfaces, and GMII and RGMII are commonly used.

MII interface has a total of 16 lines. See Figure 14. 1.

MAC SIDE	TX_ER TX_CLK TXD[3:0] RX_ER RX_DV RXD[3:0] RX_CLK CRS COL	PHY SIDE
4		

Figure 14.1 MII interface

RXD(Receive Data)[3:0]: data reception signal, a total of 4 signal lines;

TX_ER(Transmit Error): Send data error prompt signal, synchronized to *TX_CLK*, active high, indicating that the data transmitted during *TX_ER* validity period is invalid. For 10Mbps rate, *TX_ER* does not work;

RX_ER(Receive Error): Receive data error prompt signal, synchronized to *RX_CLK*, active high, indicating that the data transmitted during the valid period of *RX_ER* is invalid. For 10 Mbps speed, *RX_ER* does not work;

TX_EN(Transmit Enable): Send enable signal, only the data transmitted during the valid period of *TX_EN* is valid;

RX_DV(Reveive Data Valid): Receive data valid signal, the action type is *TX_EN* of the transmission channel;

TX_CLK: Transmit reference clock, the clock frequency is 25 MHz at 100 Mbps, and the clock frequency is 2.5 MHz at 10 Mbps. Note that the direction of *TX_CLK* clock is from the PHY side to the MAC side, so this clock is provided by the PHY;

RX_CLK: Receive data reference clock, the clock frequency is 25 MHz at 100 Mbps, and the clock frequency is 2.5 MHz at 10 Mbps. *RX_CLK* is also provided by the PHY side;

CRS: Carrier Sense, carrier detect signal, does not need to synchronize with the reference clock. As long as there is data transmission, *CRS* is valid. In addition, *CRS* is effective only if PHY is in half-duplex mode;

COL: Collision detection signal, does not need to be synchronized to the reference clock, is valid only if PHY is in half-duplex mode.

GMII interface is shown in Figure 14. 2.

Figure 14.2 GMI Interface

Compared with the MII interface, the data width of the GMII is changed from 4 bits to 8 bits. The control signals in the GMII interface such as TX_ER , TX_EN , RX_ER , RX_DV , CRS, and COL function the same as those in the MII interface. The frequencies of transmitting reference clock GTX_CLK and the receiving reference clock RX_CLK are both 125 MHz (1000 Mbps / 8 = 125 MHz).

There is one point that needs special explanation here, that is, the transmitting reference clock *GTX_CLK* is different from the *TX_CLK* in the MII interface. The *TX_CLK* in the MII interface is provided by the PHY chip to the MAC chip, and the *GTX_CLK* in the GMII interface is provided to the PHY chip by the MAC chip. The directions are different.

In practical applications, most GMII interfaces are compatible with MII interfaces. Therefore, the general GMII interface has two transmitting reference clocks: *TX_CLK* and *GTX_CLK* (the directions of the two are different, as mentioned above). When used as the MII mode, *TX_CLK* and 4 of the 8 data lines are used.

See Figure 14.3 for RGMII interface.

Figure 14.3 RGMII interface

RGMII, or reduced GMII, is a simplified version of GMII, which reduces the number of interface signal lines from 24 to 14 (COL/CRS port status indication signals, not shown here), the clock frequency is still 125 MHz, and the TX/RX data width is changed from 8 to 4 bits. To keep the transmission rate of 1000 Mbps unchanged, the RGMII interface samples data on both the rising and falling edges of the clock. *TXD*[3:0]/*RXD*[3:0] in the GMII interface is transmitted on the rising edge of the reference clock, and *TXD*[7:4]/*RXD*[7:4] in the GMII interface is transmitted on the falling edge of the reference clock. RGMI is also compatible with both 100 Mbps and 10 Mbps rates, with reference clock rates of 25 MHz and 2.5 MHz, respectively.

The *TX_EN* signal line transmits *TX_EN* and *TX_ER* information, *TX_EN* is transmitted on the rising edge of *TX_CLK*, and *TX_ER* is transmitted on the falling edge. Similarly, *RX_DV* and *RX_ER* are transmitted on the *RX_DV* signal line, and *RX_DV* is transmitted on the rising edge of *RX_CLK*, and *RX_ER* is transmitted on the falling edge.

14.3.2 Hardware Design

Figure 14.4 Schematics of RTL8211E-VB

The RTL8211E-VB chip is used to form a Gigabit Ethernet module on the experiment board. 180 / 304
The schematics is shown in Figure 14.4. The PHY chip is connected to the FPGA by receiving and transmitting two sets of signals. The receiving group signal prefix is RGO_RX, and the transmitting group signal prefix is RGOTX, which is composed of a control signal CTL, a clock signal CK and four data signals 3-0. RGO_LED0 and RGO_LED1 are respectively connected to the network port yellow signal light and green signal light. At the same time, the FPGA can configure the PHY chip through the clock line NPHY_MDC and the data line NPHY_MDIO.

14.3.3 Design of the Program

(1) Loopback test design (test1)

The first step: introduction to the program

The loopback test is very simple, which just needs to output the input data directly.

module test1	(
input		rst,		
input		rxc,		
input		rxdv,		
input	[3:0]	rxd,		
output		txc,		
output		txen,		
output	[3:0]	txd,		
);				
assign	txd = rxd;			
assign	txen = rxdv;			
assign	txc = rxc;			
endmodule				

(Note: Each program in this experiment contains a *smi_ctrl* module. In the **config** folder, it is a setting module for the PHY chip, so as to solve the problem that some computers cannot connect to the network port normally, and will not explain in detail)

The second step: pin assignment

Signal Name	Network Label	FPGA Pin	Port Description
rxc	RGMII_RXCK	B12	Input data clock
rxdv	RGMII_RXCTL	A13	Input data control signal
rxd[3]	RGMII_RX3	A15	Input data bit 3
rxd[2]	RGMII_RX2	B14	Input data bit 2
rxd[1]	RGMII_RX1	A14	Input data bit 1
rxd[0]	RGMII_RX0	B13	Input data bit 0
txc	RGMII_TXCK	B20	Output data clock
txen	RGMII_TXCTL	A19	Output data control signal
txd[3]	RGMII_TX3	B18	Output data bit 3
txd[2]	RGMII_TX2	A18	Output data bit 2
txd[1]	RGMII_TX1	B17	Output data bit 1
txd[0]	RGMII_TX0	A17	Output data bit 0
e_mdc	NPHY_MDC	C17	Configuration clock
e_mdio	NPHY_MDIO	B19	Configuration data

Table 14.1 Ethernet Experiment Pin Mapping

Before verification (the default PC NIC is a Gigabit NIC, otherwise it needed to be replaced). PC IP address needs to be confirmed first. In the DOS command window, type **ipconfig -all** command to check it. Example is shown in Figure 14. 5.

	C:\Users\HW-PC≻ipconfig -all
	Windows IP Configuration
	Host Name
<	Ethernet adapter Ethernet 2:
	Connection-specific DNS Suffix .: Description
	NetBIOS over Tcpip : Enabled

Figure 14.5 PC end IP information

To facilitate subsequent experiments, PC is provided a fixed IP address. Take this experiment as an example, IP configuration is **192.169.0.100**(could be revised, but needs to be consistent to the IP address of target sending module, for Internet Protocol reason, IP address **169.XXX.X.X** is not suggested). Find Internet Protocol Version 4(TCP/IPv4) in **Network and Sharing center**. See Figure 14. 6.

Internet Protocol Version 4 (TCP/IPv4)	Internet Protocol Version 4 (TCP/IPv4) Properties			
General				
You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.				
Obtain an IP address automatical	у			
• Use the following IP address:				
IP address:	192.168.0.100			
Subnet mask:	255.255.255.0			
Default gateway:				
Obtain DNS server address autom	atically			
Use the following DNS server add	resses:			
Preferred DNS server:				
Alternate DNS server:				
Validate settings upon exit	Advanced			
	OK Cancel			

Figure 14.6 Configure PC end IP address

Since there is no ARP protocol content (binding IP address and MAC address of the develop board) in this experiment, it needs to be bound manually through the DOS command window. Here, the IP is set to **192.168.0.2** and the MAC address is set to **00-0A-35-01-FE-CO**, (can be replaced by yourself) as shown in Figure 14. 7, the method is as follows: (Note: Run the DOS command window as an administrator)

Run the command: ARP -s 192.168.0.2 00-0A-35-01-FE-C0

View binding results: ARP -a

Select Administrator: Comr	nand Prompt				
Microsoft Windows [Ver	Microsoft Windows [Version 10.0.17134.829]				
(c) 2018 Microsoft Cor	rporation. All rights r	reserved.			
C:\WINDOWS\system32>ar	rp -s 192.168.0.2 00-04	A-35-01-FE-C0			
C:\WINDOWS\system32>AF	RP -A				
Interface: 169.254.145	5.177 0x5				
Internet Address	Physical Address	Туре			
169.254.255.255	ff-ff-ff-ff-ff-ff	static			
224.0.0.22	01-00-5e-00-00-16	static			
224.0.0.251	01-00-5e-00-00-fb	static			
224.0.0.252	01-00-5e-00-00-fc	static			
239.255.255.250	01-00-5e-7f-ff-fa	static			
255.255.255.255	ff-ff-ff-ff-ff-ff	static			
Interface: 192.168.0.1	L0 0xa				
Internet Address	Physical Address	Туре			
192.168.0.1	bc-4d-fb-cb-0a-72	dynamic			
192.168.0.2	00-0a-35-01-fe-c0	static			
192.168.0.11	00-87-46-1a-26-e0	dynamic			
192.168.0.12	30-10-b3-07-b9-db	dynamic			
192.168.0.13	a8-6b-ad-63-51-6d	dynamic			
192.168.0.17	e0-3f-49-8f-a9-4a	dynamic			
192.168.0.24	04-d4-c4-5d-dd-d6	dynamic			
192.168.0.255	ff-ff-ff-ff-ff-ff	static			
224.0.0.22	01-00-5e-00-00-16	static			
224.0.0.251	01-00-5e-00-00-fb	static			
224.0.0.252	01-00-5e-00-00-fc	static			
239.255.255.250	01-00-5e-7f-ff-fa	static			
255.255.255.255	ff-ff-ff-ff-ff-ff	static			

Figure 14.7 Address binding method 1

If a failure occurs while running the ARP command, another way is available, as shown in Figure 14.8:

- 1) Enter the **netsh i i show** in command to view the number of the local connection, such as the "23" of the computer used this time.
- 2) Enter netsh -c "i i" add neighbors 23 (number) "192.168.0.2" "00-0A-35-01-FE-CO"
- 3) Enter **arp** -**a** to view the binding result

Figure 14.8 Address binding method 2

Next, we also use the DOS command window for connectivity detection, as shown in Figure 14. 9. **Ping** is an executable command that comes with the Windows family. Use it to check if the network can be connected. It can help us analyze and determine network faults. Application format: Ping IP address (not host computer IP).

C:\WINDOWS\system32\cmd.exe - ping 169.254.145.177 -t					
Microsoft Windows [Version 10.0.17134.829]					
(c) 2018 Microsoft Corporation. All rights reserved.					
C:\Users\HW-PC>ping 169.254.145.177 -t					
Pinging 169.254.145.177 with 32 bytes of data:					
Reply from 169.254.145.177: bytes=32 time<1ms TTL=128					
Reply from 169.254.145.177: bytes=32 time<1ms TTL=128					
Reply from 169.254.145.177: bytes=32 time<1ms TTL=128					
Reply from 169.254.145.177: bytes=32 time<1ms TTL=128					
Reply from 169.254.145.177: bytes=32 time<1ms TTL=128					
Reply from 169.254.145.177: bytes=32 time<1ms TTL=128					
Reply from 169.254.145.177: bytes=32 time<1ms TTL=128					
Reply from 169.254.145.177: bytes=32 time<1ms TTL=128					

Figure 14.9 Send data

Start SignalTap II, after sending the command, as shown in Figure 14. 10. The data is ordinary and the hardware is intact seen from the screenshot.

log:	Trig @	2019/05/10 14:44:16 (0:0:34.4 elapsed)									clic	k to insert time ba	r	
Туре	e Alias	Name	2 (,	. 4	, 6	. a	1p 12	14 16 18 20	22 24	_ 2,6 _ 2,8	, зр , зр	: 3 ₁ 4 3 ₁ 6	, 3β ⁴
*		rxdv												
*		txen												
-		⊞-rxd[30]	Dh		5h		(Dh)	Fh	7h\Fh\Ah\1h\6h\0h\Ah\4	<u>≰h</u> X Oh Xa	ih)(Oh)(_4h_)(oh (4h)(Fh)	Ah (1h (6h (0h) 2	1) 8h) 2h) 🗌
5		⊞txd[30]	Dh		5h) Dh)	Fh	7h\Fh\Ah\1h\6h\0h\Ah\4	4h) Oh (8	ih)(0h)(_4h_)(0h (4h Fh)	Ah (1h 6h 0h 2	1)(8h)(2h)

Figure 14.10 SignalTap II data capture

(2) Special IP core configuration (test2)

Because it is the RGMII interface, the data is bilateral along 4-bit data. Therefore, when data processing is performed inside the FPGA, it needs to be converted into 8-bit data. Go to **Installed IP > Library > Basic Functions > I/O** to find **ALTDDIO_IN** and **ALTDDIO_OUT**. To implement it, IP core (*ddio_in*) is called, and after internal data processing, IP core is passed (*ddio_out*) to convert 8-bit data into bilateral edge 4-bit data transfer. It should be noted that, considering the enable signal and data signal synchronization, the enable signal is entered to *ddio* for conversion at the same time. The specific settings are shown in Figure 14. 11 and Figure 14. 12.

🔆 MegaWizard Plug-In Manager	– 🗆 X
altdio_in	About Documentation
Parameter 2 Simulation 3 Summary Settings Model	
ddio_in dataout_i(4.0) inclock inclock	Currently selected device family: Cydone 10 LP C Match project/default Width: S & Match project/default Width: S & Match project/default Use 'adr' port Use 'adr' port Not used Registers power up high Synchronous clear and synchronous set ports Use 'sch' port Use 'sch' port Use 'sch' port Not used Not used
Resource Usage	□ Use 'indocken' port ☑ Invert input dock
	Cancel < <u>Back</u> <u>Next</u> Finish

Figure 14.11 ddio_in setting

🔆 MegaWizard Plug-In Manager	– 🗆 X
ALTDDIO_OUT	About Documentation
Parameter Image: Simulation Model Image: Summary Model	
General 2 General 2 datain_[4.0] outclock	Currently selected device family: Cydone 10 LP Match project/default Width: Asycnhronus clear and asynchronous set ports Use 'ach' port Use 'ach' port Not used Registers power up high Use 'outdocken' port Invert 'dataout' output
Resource Usage	
	Cancel < Back Next > Einish

Figure 14.12 ddio_out setting

Considering that the driving ability of the clock provided by the PHY chip is relatively poor, after the phase-locked loop processing, unlike the prior part, the input clock *rxc* selects the homologous input, as shown in Figure 14. 13, and outputs CO clock *ddio_clk* as the driving clock of two *ddio* IP cores. As shown in Figure 14. 14, outputs the *C1* clock *txc* as the data transmission clock (note that due to hardware circuit and timing reasons, *txc* needs to be 90° phase difference). See Figure 14. 15.

べ MegaWizard Plug-In Manager [page 1 of 12]	? ×
	About Documentation
Parameter Settings 2 PLL Reconfiguration 3 Output Clocks 4 EDA	5 Summary
General/Modes // Inputs/Lock // Bandwidth/SS	Clock switchover
	Currently selected device family: Cyclone 10 LP
PLL	Match project/default
incik0 frequency: 126.000 MHz Operation Mode: Sro Syno Comp Cik Raio Ph (dg) DC (%) ot 1/1 90.00 90.00 Cyclone 10 LP	Able to implement the requested PLL General Which device speed grade will you be using? Use military temperature range devices only What is the frequency of the indk0 input? Set up PLL in LVDS mode PLL Type Which PLL type will you be using? Fast PLL Fast PLL Fast PLL Fast PLL Fast PLL Fast PLL Fast PLL Fast PLL Fast PLL Fast PLL Fast PLL Fast PLL

Figure 14.13 PLL input clock setting

べ MegaWizard Plug-In Manager [page 6 of 12]		? ×
altpll		About Documentation
1 Parameter 2 PLL 3 Output 4 EDA	5 Summary	
dkc0 > $dkc1$ > $dkc2$ > $dkc3$ > $dkc4$	>	
PLL	CO - Core/External Output Cloc Able to implement the requested PLL Use this dock	ck
areset Operation Mede: Sta Sumo Comp. C1.	Clock Tap Settings	Requested Settings Actual Settings
Cite Ratio Pri dig C (5) (Cit. Ratio Pri dig C (5) cit. 171 90.00 80.00 cit. 171 90.00 80.00 Cyclone 10 LP	Enter output dock frequency: Enter output dock parameters: Clock multiplication factor Clock division factor Clock dhase shift Clock duty cycle (%) Note: The displayed internal settings of the PLL is recommended for use by advanced users only	1 1 1 1 0.00 1
-		Per Clock Feasibility Indicators c0 c1 c2 c3 c4

Figure 14.14 PLL output clcok(c0) setting

ℵ MegaWizard Plug-In Manager [page 7 of 12]		? ×
		<u>About</u> <u>Documentation</u>
Parameter PLL Output EDA Settings Reconfiguration Clocks Image: Clocks <td< th=""><th>5 Summary</th><th></th></td<>	5 Summary	
dkc0 $dkc1$ $dkc2$ $dkc3$ $dkc4$	\geq	
PLL	c1 - Core/External Output Clo Able to implement the requested PLL	ck
areset Operation Mode: Sto Syno Comp. C1	Clock Tap Setungs	Requested Settings Actual Settings
Cik Ratio Ph (do DC (%)	Enter output dock frequency:	125.0000000 MHz - 125.000000
c0 1/1 0.00 50.00	 Enter output clock parameters: 	1
C1 1/1 90.00 50.00	Clock multiplication factor	< <copy< td=""></copy<>
Cyclone 10 LP	Clock division factor	
	Clock phase shift	90.00 🚖 deg 🔻 90.00
	Clock duty cycle (%)	50.00 🔹 50.00
		Description Valu ^
	Note: The displayed internal settings of the	Primary clock VCO frequency (MHz) 62
	PLL is recommended for use by advanced users only	Modulus for M counter 5
	,	< >
		Per Clock Feasibility Indicators
		c0 c1 c2 c3 c4
		Cancel < Back Next > Finish

Figure 14.15 PLL output clcok(c1) setting

The three IP cores are instantiated into the previous loopback test, and the data transmission correctness test is performed. (It is necessary to notice the ordered timing. The *ddio_out* input data needs to be reversed. For details, refer to the project file (test2)). This time a network debugging assistant applet is used as an auxiliary testing tool. Program the board and

verify it.

As shown in Figure 14.16, after setting the correct address and data type, we send the detection information (*love you!*) through the host computer. The data packet is captured by Wireshark, as shown in Figure 14.17. The data is correctly transmitted back to the PC.

		TCP/UDP Net Assi	stant		₩ □ ×
Settings (1) Protocol UDP (2) Local host addr 159 254157.8 (3) Local host port (3) Local host port (4) Local host port (4) Local host port (5) Loca	Data Receiv	TCP/UDP Net Assis	tant	→SAV	/ A GE V4.1.0
Send as hex Send cvclic	Remote:	192.168.0.2 :8080		•	Clean
Interval 10 ms Load Clear	love you!	1			Send
💓 Pull-down menu	•		Send: 45	Recv: 0	Reset

Figure 14.16 Host computer sends the test data

(*E	ithernet 2																					
ile	Edit View	Go	Capture	An	alyze	St	tatisti	cs	Teleph	ony	Wirel	ess	Tools	Help								
(=	0 1	010	X 🗅	9	ە جە	e) 9	1	F 4			⊕ 0											
App	ply a display fi	lter <0	trl-/>						_	_											 	_
	Time		Source	2					Des	tinatior	n		P	rotocol	Lenat	n Info						
	1 0.000	800	169.	254.	157.	8			192	.168	.0.2		U	DP	5	1 808	0 → 8(080	Len=9	9		
Fr	ame 1. 51	hutes	on wire	- (4)	98 h	4+5) 5'	1 but	tas c	antur	ad (/	188 h	1+5)		enface	. 0						
Fr: Etl In Us Da	ame 1: 51 hernet II, ternet Pro er Datagri ta (9 byto	bytes Src: btocol mm Prot ss)	on wire Micro-S Versior ocol, S	e (40 5t_12 1 4, 5rc F	08 b 9:a9 Src Port	its) :d0 : 16 : 80), 5: (00 59.2! 080,	L by1 :d8:6 54.1 Dst	tes c 51:19 57.8, Port	aptur :a9:d Dst: : 808	red (4 d0), f : 192. 30	408 b. Dst: 1 168.0	its) Kilin: ð.2	on int <_01:1	erface e:c0 (: 0	::35:0	01:fe	::c0))		

Figure 14.17 Correct reception of data on the PC side

(3) Complete Ethernet data transmission design

For complete Ethernet data transmission, it is necessary to have the receiving part of the data and the transmitting part of the data. For the convenience of experiment, we store the data transmitted by the PC first in the RAM. After reading via the transmitting end, send it to the PC. For a series of data unpacking and packaging, refer to the project file "ethernet". A brief introduction to each module follows.

1) Data receiving module (ip_receive)

The problem to be solved by this module is to detect and identify the data frame, unpack the valid data frame, and store the real data in the ram.

```
always @ (posedge clk) begin
     if (clr) begin
          rx_state <= idle;</pre>
          data_receive <= 1'b0;
     end
     else
     case (rx_state)
          idle :
           begin
                valid_ip_P <= 1'b0;
                byte_counter <= 3'd0;</pre>
                data_counter <= 10'd0;</pre>
                mydata <= 32'd0;
                state_counter <= 5'd0;</pre>
                data_o_valid <= 1'b0;</pre>
                ram_wr_addr <= 0;
                if (e_rxdv == 1'b1) begin
                      if (datain[7:0] == 8'h55) begin
                                                                            //First 55 received
                           rx_state <= six_55;</pre>
```

```
mydata <= {mydata[23:0], datain[7:0]};</pre>
           end
           else
                rx_state <= idle;</pre>
     end
end
six_55
         :
begin
                                                                // 6 0x55 received
     if ((datain[7:0] == 8'h55) && (e_rxdv == 1'b1)) begin
           if (state_counter == 5) begin
                state_counter <= 0;</pre>
                rx_state <= spd_d5;</pre>
          end
           else
                state_counter <= state_counter + 1'b1;</pre>
     end
     else
           rx_state <= idle;</pre>
end
spd_d5 :
                                                                //A 0xd5 received
begin
     if ((datain[7:0] == 8'hd5) && (e_rxdv == 1'b1))
           rx_state <= rx_mac;</pre>
     else
           rx_state <= idle;</pre>
end
```

```
rx_mac :
          begin
                                         // Receive target mac address and source mac address
               if (e_rxdv == 1'b1) begin
                     if (state_counter < 5'd11) begin
                          mymac <= {mymac[87:0], datain};</pre>
                          state_counter <= state_counter + 1'b1;</pre>
                     end
                     else begin
                          board_mac <= mymac[87:40];</pre>
                          pc_mac <= {mymac[39:0], datain};</pre>
                          state_counter <= 5'd0;</pre>
                          if((mymac[87:72] == 16'h000a) && (mymac[71:56] == 16'h3501) &&
(mymac[55:40] == 16'hfec0))
                                // Determine if the target MAC Address is the current FPGA
                               rx_state <= rx_IP_Protocol;</pre>
                          else
                               rx_state <= idle;</pre>
                     end
               end
               else
                     rx_state <= idle;</pre>
          end
          rx_IP_Protocol :
                                                         // Receive 2 bytes of IP TYPE
          begin
               if (e_rxdv == 1'b1) begin
                     if (state_counter < 5'd1) begin
                          myIP_Prtcl <= {myIP_Prtcl[7:0], datain[7:0]};</pre>
                          state_counter <= state_counter+1'b1;</pre>
```

end

else begin

IP_Prtcl <= {myIP_Prtcl[7:0],datain[7:0]};</pre>

```
valid_ip_P <= 1'b1;</pre>
```

state_counter <= 5'd0;</pre>

rx_state <= rx_IP_layer;</pre>

end

end

else

rx_state <= idle;</pre>

end

rx_IP_layer :

begin

// Receive 20 bytes of udp virtual header, ip address

```
valid_ip_P <= 1'b0;</pre>
```

```
if (e_rxdv == 1'b1) begin
```

if (state_counter < 5'd19) begin

myIP_layer <= {myIP_layer[151:0], datain[7:0]};</pre>

state_counter <= state_counter + 1'b1;</pre>

end

else begin

IP_layer <= {myIP_layer[151:0], datain[7:0]};</pre>

```
state_counter <= 5'd0;</pre>
```

rx_state <= rx_UDP_layer;</pre>

end

end

else

rx_state <= idle;</pre>

```
end
```

```
rx_UDP_layer :
```

```
// Accept 8-byte UDP port number and UDP packet length
begin
     rx_total_length <= IP_layer[143:128];</pre>
     pc_IP <= IP_layer[63:32];
     board_IP <= IP_layer[31:0];</pre>
     if (e_rxdv == 1'b1) begin
          if (state_counter < 5'd7) begin
               myUDP_layer <= {myUDP_layer[55:0], datain[7:0]};</pre>
               state_counter <= state_counter + 1'b1;</pre>
          end
          else begin
               UDP_layer <= {myUDP_layer[55:0], datain[7:0]};
               rx_data_length <= myUDP_layer[23:8]; //length of UDP data package
               state_counter <= 5'd0;</pre>
               rx_state <= rx_data;</pre>
          end
     end
     else
          rx state <= idle;</pre>
end
rx_data :
                                                   //Receive UDP data
begin
     if (e_rxdv == 1'b1) begin
          if (data_counter == rx_data_length-9) begin
                                                                   //Save last data
               data_counter <= 0;</pre>
```

rx_state <= rx_finish;</pre> ram_wr_addr <= ram_wr_addr + 1'b1;</pre> data_o_valid <= 1'b1;</pre> // Write RAM if (byte_counter == 3'd3) begin data_o <= {mydata[23:0], datain[7:0]};</pre> byte_counter <= 0;</pre> end else if (byte_counter==3'd2) begin data_o <= {mydata[15:0], datain[7:0],8'h00}; //Less than 32-bit, //add '0' byte_counter <= 0;</pre> end else if (byte_counter==3'd1) begin data_o <= {mydata[7:0], datain[7:0], 16'h0000}; //Less than //32-bit , add '0' byte_counter <= 0;</pre> end else if (byte_counter==3'd0) begin data_o <= {datain[7:0], 24'h000000}; //Less than 32-bit, //add '0' byte_counter <= 0;</pre> end end else begin data_counter <= data_counter + 1'b1;</pre> if (byte_counter < 3'd3) begin mydata <= {mydata[23:0], datain[7:0]}; byte_counter <= byte_counter + 1'b1;</pre>

data_o_valid <= 1'b0;</pre> end else begin data_o <= {mydata[23:0], datain[7:0]};</pre> byte_counter <= 3'd0;</pre> data_o_valid <= 1'b1; // Accept 4bytes of data, write //RAM request ram_wr_addr <= ram_wr_addr+1'b1;</pre> end end end else rx_state <= idle;</pre> end rx_finish : begin //added for receive test data_o_valid <= 1'b0;</pre> data_receive <= 1'b1;</pre> rx_state <= idle;</pre> end default : rx_state <= idle;</pre> endcase end

The receiving module is to perform step by step analysis on the received data.

Idle state: If '55' is received, it jumps to the *six_55* state.

Six_55 state: If it continues to receive six consecutive 55s, it will jump to the *spd_d5* state, otherwise it will return the *idle* state.

Spd_d5 state: If 'd5' continues received, it proves that the complete packet preamble "55_55_55_55_55_55_55_65" has been received, and jumps to *rx_mac*, otherwise it returns the *idle* transition.

rx_mac state: This part is the judgment of the target MAC address and the source MAC address. If it matches, it will jump to the *rx_IP_Protocol* state, otherwise it will return the *idle* state and resend.

rx_IP_Protocol state: Determine the type and length of the packet and jump to the *rx_IP_layer* state.

rx_IP_layer state: Receive 20 bytes of UDP virtual header and IP address, jump to *rx_UDP_layer* state

rx_UDP_layer state: Receive 8-byte UDP port number and UDP packet length, jump to *rx_data* state

Rx_data state: Receive UDP data, jump to *rx_finish* state

Rx_finish state: A packet of data is received, and it jumps to the *idle* state to wait for the arrival of the next packet of data.

2) Data sending module (ip_send)

The main content of this module is to read out the data in the RAM, package and transmit the data with the correct packet protocol type (UDP). Before transmitting, the data is also checked by CRC.

initial begin	
tx_state <= idle;	
//Define IP header	
preamble[0] <= 8'h55; //character "d5"	//7 preambles "55", one frame start
preamble[1] <= 8'h55;	
preamble[2] <= 8'h55;	
preamble[3] <= 8'h55;	
preamble[4] <= 8'h55;	
preamble[5] <= 8'h55;	

preamble[6] <= 8'h55;

preamble[7] <= 8'hD5;</pre>

mac_addr[0] <= 8'hB4; //Target MAC address "ff-ff-ff-ff-ff", full ff is
//broadcast package
mac_addr[1] <= 8'h2E; //Target MAC address "B4-2E-99-20-C4-61",
// For the PC-side address used for this experiment, change the content according to the actual
//PC in the debugging phase.
mac_addr[2] <= 8'h99;
mac_addr[3] <= 8'h20;</pre>

mac_addr[4] <= 8'hC4;

mac_addr[5] <= 8'h61;

mac_addr[6] <= 8'h00; mac_addr[7] <= 8'h0A; mac_addr[8] <= 8'h35; mac_addr[9] <= 8'h01;</pre>

mac_addr[10]<= 8'hFE;

mac_addr[11]<= 8'hC0;

mac_addr[12]<= 8'h08; mac_addr[13]<= 8'h00;</pre>

//Source MAC address "00-0A-35-01-FE-C0"

//Modify it according to the actual needs

//0800: IP package type

end

i<=0;

This part defines the preamble of the data packet, the MAC address of the PC, the MAC address of the development board, and the IP packet type. It should be noted that in the actual experiment, the MAC address of the PC needs to be modified. Keep the MAC address consistent along the project, otherwise the subsequent experiments will not receive data.

```
always @ (posedge clk) begin
case (tx_state)
     idle :
     begin
          e_txen <= 1'b0;
          crcen <= 1'b0;
          crcre <= 1;
          j <= 0;
          dataout <= 0;
          ram_rd_addr <= 1;</pre>
          tx_data_counter <= 0;</pre>
          if (time_counter == 32'h0400000) begin
                                                     //Wait for the delay, send a data
//package regularly
          tx_state <= start;</pre>
          time_counter <= 0;</pre>
     end
     else
          time_counter <= time_counter + 1'b1;</pre>
end
start :
                //IP header
begin
     ip_header[0] <= {16'h4500, tx_total_length};</pre>
                                                          //Version: 4; IP header length: 20;
//IP total length
     ip_header[1][31:16] <= ip_header[1][31:16]+1'b1;
                                                           // Package serial number
     ip_header[1][15:0] <= 16'h4000;
                                                            //Fragment offset
     ip_header[2] <= 32'h80110000;
                                                       //mema[2][15:0] protocol: 17(UDP)
     ip_header[3] <= 32'hc0a80002;</pre>
                                                            //Source MAC address
     ip_header[4] <= 32'hc0a80003;</pre>
                                                            //Target MAC address
```

```
ip_header[5] <= 32'h1f901f90;</pre>
                                                           // 2-byte source port number and
//2-byte target port number
     ip_header[6] <= {tx_data_length, 16'h0000};</pre>
                                                          //2 bytes of data length and 2
//bytes of checksum (none)
    tx_state <= make;</pre>
end
make
         :
begin
                           // Generate a checksum of the header
     if (i == 0) begin
         check_buffer <= ip_header[0][15:0] + ip_header[0][31:16] +
                        ip_header[1][15:0] + ip_header[1][31:16] +
                        ip_header[2][15:0] + ip_header[2][31:16] +
                        ip_header[3][15:0] + ip_header[3][31:16] +
                        ip_header[4][15:0] + ip_header[4][31:16];
         i <= i + 1'b1;
     end
     else if(i == 1) begin
         check_buffer[15:0] <= check_buffer[31:16] + check_buffer[15:0];</pre>
         i <= i+1'b1;
     end
    else begin
         ip_header[2][15:0] <= ~check_buffer[15:0]; //header checksum
         i <= 0;
         tx_state <= send55;</pre>
     end
end
send55 :
```

```
// Send 8 IP preambles: 7 "55", 1 "d5"
begin
                                                              //GMII transmitted valid data
     e_txen <= 1'b1;
     crcre <= 1'b1;
                                                              //reset CRC
     if(i == 7) begin
          dataout[7:0] <= preamble[i][7:0];</pre>
          i <= 0;
          tx_state <= sendmac;</pre>
     end
     else begin
          dataout[7:0] <= preamble[i][7:0];</pre>
          i <= i + 1'b1;
     end
end
sendmac :
begin
                          // Send target MAC address, source MAC address and IP packet type
     crcen <= 1'b1;
                               // CRC check enable, crc32 data check starts from the target MAC
     crcre <= 1'b0;
     if (i == 13) begin
          dataout[7:0] <= mac_addr[i][7:0];</pre>
          i <= 0;
          tx_state <= sendheader;</pre>
     end
     else begin
          dataout[7:0] <= mac_addr[i][7:0];</pre>
          i <= i + 1'b1;
     end
end
```

```
sendheader :
begin
                                                            // Send 7 32-bit IP headers
     datain_reg <= datain;</pre>
                                                            //Prepare the data to be transmitted
     if(j == 6) begin
           if(i == 0) begin
                dataout[7:0] <= ip_header[j][31:24];</pre>
                i <= i + 1'b1;
           end
           else if(i == 1) begin
                dataout[7:0] <= ip_header[j][23:16];</pre>
                i <= i + 1'b1;
           end
           else if(i == 2) begin
                dataout[7:0] <= ip_header[j][15:8];</pre>
                i <= i + 1'b1;
           end
           else if(i == 3) begin
                dataout[7:0] <= ip_header[j][7:0];</pre>
                i <= 0;
                j <= 0;
                tx_state <= senddata;</pre>
           end
     end
     else begin
           if(i == 0) begin
                dataout[7:0] <= ip_header[j][31:24];</pre>
                i <= i + 1'b1;
```

```
end
           else if(i == 1) begin
                dataout[7:0] <= ip_header[j][23:16];</pre>
                i <= i + 1'b1;
           end
           else if(i == 2) begin
                dataout[7:0] <= ip_header[j][15:8];</pre>
                i <= i + 1'b1;
           end
           else if(i == 3) begin
                dataout[7:0] <= ip_header[j][7:0];</pre>
                i <= 0;
                j <= j + 1'b1;
           end
     end
end
senddata :
begin
                                                                 //Transmit UDP packets
     if(tx_data_counter == tx_data_length - 9) begin
                                                                 //Trasnmit last data
           tx_state <= sendcrc;</pre>
                if (i == 0) begin
                      dataout[7:0] <= datain_reg[31:24];</pre>
                     i <= 0;
                end
                else if (i == 1) begin
                     dataout[7:0] <= datain_reg[23:16];</pre>
                     i <= 0;
```

```
end
                else if (i == 2) begin
                     dataout[7:0] <= datain_reg[15:8];</pre>
                     i <= 0;
               end
               else if (i == 3) begin
                     dataout[7:0] <= datain_reg[7:0];</pre>
                     datain_reg <= datain;</pre>
                                                                     //Prapare the data
                     i <= 0;
               end
     end
     else begin
                                                                     //Send other data package
          tx_data_counter <= tx_data_counter+1'b1;</pre>
               if (i == 0) begin
                     dataout[7:0] <= datain_reg[31:24];</pre>
                     i <= i + 1'b1;
                     ram_rd_addr <= ram_rd_addr + 1'b1; // Add 1 to the RAM address,
//let the RAM output data in advance.
               end
               else if (i == 1) begin
                     dataout[7:0] <= datain_reg[23:16];</pre>
                     i <= i + 1'b1;
                end
               else if (i == 2) begin
                     dataout[7:0] <= datain_reg[15:8];</pre>
                     i <= i + 1'b1;
               end
                else if (i == 3) begin
                     dataout[7:0] <= datain_reg[7:0];</pre>
```

//Prepare data datain_reg <= datain;</pre> i <= 0; end end end sendcrc : begin //Send 32-bit CRC checksum crcen <= 1'b0; if (i == 0) begin dataout[7:0] <= {~crc[24], ~crc[25], ~crc[26], ~crc[27], ~crc[28], ~crc[29], ~crc[30], ~crc[31]}; i <= i + 1'b1; end else begin if (i == 1) begin dataout[7:0] <= {~crc[16], ~crc[17], ~crc[18], ~crc[19], ~crc[20], ~crc[21], ~crc[22], ~crc[23]}; i <= i + 1'b1; end else if (i == 2) begin dataout[7:0] <= {~crc[8], ~crc[9], ~crc[10], ~crc[11], ~crc[12], ~crc[13], ~crc[14], ~crc[15]}; i <= i + 1'b1; end else if (i == 3) begin dataout[7:0] <= {~crc[0], ~crc[1], ~crc[2], ~crc[3], ~crc[4], ~crc[5], ~crc[6], ~crc[7]}; i <= 0;

```
tx_state <= idle;
end
end
end
default : tx_state <= idle;
endcase
end
```

Idle state: Waiting for delay, sending a packet at regular intervals and jumping to the *start* state.

Start state: Send the packet header and jump to the make state.

make state: Generates the checksum of the header and jumps to the send55 state.

Send55 status: Send 8 preambles and jump to the sendmac state.

sendmac state: Send the target MAC address, source MAC address and IP packet type, and jump to the *sendheader* state.

sendheader state: Sends 7 32-bit IP headers and jumps to the senddata state.

senddata state: Send UDP packets and jump to the sendcrc state.

sendcrc state: Sends a 32-bit CRC check and returns the idle state.

Following the above procedure, the entire packet of data is transmitted, and the *idle* state is returned to wait for the transmission of the next packet of data.

3) CRC check module (crc)

The CRC32 check of an IP packet is calculated at the destination MAC Address and until the last data of a packet. The CRC32 verilog algorithm and polynomial of Ethernet can be generated directly at the following website: http://www.easics.com/webtools/crctool

4) UDP data test module (UDP)

This module only needs to instantiate the first three sub-modules together. Check the correctness of each connection.

5) Top level module settings (ethernet)

The PLL, *ddio_in*, *ddio_out*, *ram*, and *UDP* modules are instantiated to the top level entity, and specific information is stored in advance in the RAM (Welcome To ZGZNXP World!). When there is no data input, the FPGA always sends this information. With data input, the received data is sent. Refer to the project files for more information.

14.4 Experiment Verification

The pin assignment of this test procedure is identical to that in Test 1.

Before programming the development board, it is necessary to note that the IP address of the PC and the MAC address of the development board must be determined and matched, otherwise the data will not be received.

Download the compiled project to the development board. As shown in Figure 14.18, the FPGA is keeping sending information to the PC. The entire transmitted packet can also be seen in Wireshark, as shown in Figure 14.19.

Figure 14.18 Send specific information

	*Ethern	et 2																		_	-		×	(
Fi	e Edit	View	Go	Captu	re Ar	nalyze	Stati	istics	Tele	phony	Wi	reless	Tools	He	р									
		۲	010	× C	9	÷ 4	. 🖻	1	Ł		Ð,	Θ.	Q 🎹											
	Apply a c	lisplay filt	er <0	Ctrl-/>																	-) Ex	pression		÷
No		Time		Sou	rce			1	Destina	ation			Protoc	ol I	.ength	Info								^
	11	4.8316	17	19	2.168.	.0.2		1	192.1	68.0.	3		UDP		94	8080	→ 808) Len=	=52					
	12	5.3684	75	193	2.168.	.0.2		1	192.1	68.0.	3		UDP		94	8080	→ 808) Len=	=52					
	13	5.9053	86	193	2.168.	.0.2		1	192.1	68.0.	3		UDP		94	8080	→ 808	len=	=52					
	14	6.4421	62	19	2.168.	.0.2		1	192.1	68.0.	3		UDP		94	8080	→ 8080	len=	=52					
	15	6.9789	68	193	2.168.	.0.2		1	192.1	68.0.	3		UDP		94	8080	→ 808	len=	=52					
	16	7.5158	23	193	2.168.	.0.2		1	192.1	68.0.	3		UDP		94	8080	→ 808	len=	=52					
	17	8.0527	21	193	2.168.	.0.2		1	192.1	68.0.	3		UDP		94	8080	→ 808	len=	=52					
	18	8.5895	95	193	168.	.0.2		1	192.1	68.0.	3		UDP		94	8080	→ 8080	len=	=52					
	19	9.1263	97	193	.168.	.0.2		1	192.1	68.0.	3		UDP		94	8080	→ 8080	3 Len=	=52					
	20	9.6632	44	193	.168.	.0.2			192.1	68.0.	3		UDP		94	8080	→ 808	Len=	=52					×
<																						>		
>	Frame	3: 94 l	bytes	on wi	re (7	52 bi	ts),	94 ł	ytes	capti	ured	(752	bits)	on i	.nterf	ace 0								
>	Ethern	et II,	Snc:	Xilir	x_01:	fe:c0	(00:	:0a:3	5:01	:fe:c	0), [Ost: N	licro-9	St_19	:a9:0	10 (00	:d8:61	:19:a	9:d0)				
>	Intern	et Prot	tocol	Versi	on 4,	Src:	192.	.168.	0.2,	Dst:	192.	168.0	.3											
>	User D	atagra	m Prot	cocol,	Snc	Port:	8086	0, Ds	st Po	rt: 80	080													
~	Data (52 byte	es)																					
	Dat	a: 5765	56c636	if6d65	20546	f205a4	475a4	le585	0205	76f726	6c642	21												
	[Le	ngth: S	52]																					
00	00 00	d8 61	19 a9	d0 0	0 0a	35 01	L fe	c0 0	8 00	45 00		· a · · ·	5	· · · E										_
00	010 00	50 00	27 40	00 8	0 11	79 20	0 c0	a8 0	0 02	c0 a8	3.	P . '@	у.											
00	20 00	03 1f	90 lf	90 0	0 3c	00 00	9 57	65 6	c 63	6f 6d	1 <u>-</u>		·< ··	elco	m									
00	30 65	20 54	6f 20	5a 4	7 5a	4e 58	3 50	20 5	7 6f	72 60	e	To Z	GZ NXP	Wor	1									
00	040 64	21 00	00 00	00 0	0 00	00 00	00 0	00 0	0 00	00 00	a d				1									
96	00 00	00 00	00 00	00 0	00 00	00 00	00	00 0	00 0															

Figure 14.19 Specific information package

When the PC sends data to the FPGA, as shown in Figure 14. 20, the entire packet arrives at the FPGA, and then the FPGA repackages the received data and sends it to the PC. See Figure 14. 21, the network assistant also receives the transmitted data information accurately, as shown in Figure 14. 22. Similarly, through SignalTap we can see the process of writing the received data, as shown in Figure 14. 23.

<u>File Edit View Go Capture Analyze</u>	e <u>S</u> tatistics Telephon <u>y</u>	<u>⊺</u> ools <u>I</u> nternals <u>H</u> elp				
● ● 🛋 🛎 🔬 📄 🖺 🗶 🥰	🔍 🗢 🔶 🛧 🛽		🖭 🐺 🖾 🥵 💥 💢			
Filter:		Expression Clear A	Apply Save			
Frame 7: 60 bytes on wire (4	No. Time	Source	Destination	Protocol Length	Info	^
Ethernet II, Src: b4:2e:99:2	1 0.00000000	192.168.0.2	192.168.0.3	UDP	94 Source port: 8080	Destination port: 8080
 Internet Protocol Version 4, 	2 0.536933000	192.168.0.2	192.168.0.3	UDP	94 Source port: 8080	Destination port: 8080
🗉 User Datagram Protocol, Src	3 1.073744000	192.168.0.2	192.168.0.3	UDP	94 Source port: 8080	Destination port: 8080
Data (18 bytes)	4 1.610662000	192.168.0.2	192.168.0.3	UDP	94 Source port: 8080	Destination port: 8080
Data: 6c6f7665204650474120	5 2.147487000	192.168.0.2	192.168.0.3	UDP	94 Source port: 8080	Destination port: 8080
[Length: 18]	6 2.684312000	192.168.0.2	192.168.0.3	UDP	94 Source port: 8080	Destination port: 8080
	7 2.990404000	192.168.0.3	192.168.0.2	UDP	60 Source port: 8080	Destination port: 8080
	8 3.221266000	192.168.0.2	192.168.0.3	UDP	60 Source port: 8080	Destination port: 8080
	9 3.758027000	192.168.0.2	192.168.0.3	UDP	60 Source port: 8080	Destination port: 8080
	10 4.294986000	192.168.0.2	192.168.0.3	UDP	60 Source port: 8080	Destination port: 8080
	11 4.831847000	192.168.0.2	192.168.0.3	UDP	60 Source port: 8080	Destination port: 8080
	12 5.368594000	192.168.0.2	192.168.0.3	UDP	60 Source port: 8080	Destination port: 8080
	13 5.905572000	192.168.0.2	192.168.0.3	UDP	60 Source port: 8080	Destination port: 8080
	14 6.442441000	192.168.0.2	192.168.0.3	UDP	60 Source port: 8080	Destination port: 8080
	15 6.979215000	192.168.0.2	192.168.0.3	UDP	60 Source port: 8080	Destination port: 8080
	16 7.516174000	192.168.0.2	192.168.0.3	UDP	60 Source port: 8080	Destination port: 8080 🗸
	<					>
< ,	0000 00 0a 35 01 f 0010 00 2e 21 a0 0 0020 00 02 1f 90 1 0030 50 47 41 20 0	Fe C0 b4 2e 99 20 C4 00 00 40 11 00 00 C4 f 90 00 1a 81 81 G⊂ f6 67 65 76 65 72 a3	61 08 00 45 00 4 80 00 3 c0 a8 61 76 65 20 46 Al PGA FOEV	aE. 		
🔘 💅 Data (data), 18 bytes	Packets: 16 · Disp	ayed: 16 (100.0%) · Dropped	: 0 (0.0%) Profi	e: Default		

Figure 14. 20 PC send data package

🧲 *以太网 [Wireshark 1.12.4 (v1.12.4-0-	gb4861da from master-1.1	2)]				- 🗆 ×	
<u>File Edit View Go Capture Analyze</u>	<u>Statistics</u> Telephony	[ools <u>I</u> nternals <u>H</u> elp					
0 0 🖌 🖩 🔬 🖿 🗎 X 😂	् 🗢 🔹 🐴 🛃	 Q Q Q	. 🕾 🗃 🕅 🕵 🔆 💢				
Filter:		✓ Expression Clear	Apply Save				
⊕ Frame 9: 60 bytes on wire (4 ⊕ Ethernet II, Src: Xilinx_01:	No. Time 1 0.000000000	Source 192.168.0.2	Destination 192.168.0.3	Protocol Length	Info 94 Source port: 8080	Destination port: 8080	^
Internet Protocol Version 4, User Datagram Protocol, Src ■ Data (18 bytec)	2 0.536933000 3 1.073744000 4 1.610662000	192.168.0.2 192.168.0.2 192.168.0.2	192.168.0.3 192.168.0.3 192.168.0.3	UDP	94 Source port: 8080 94 Source port: 8080 94 Source port: 8080	Destination port: 8080 Destination port: 8080 Destination port: 8080	
Data: 6c6f7665204650474120 [Length: 18]	5 2.147487000 6 2.684312000	192.168.0.2 192.168.0.2	192.168.0.3 192.168.0.3	UDP UDP	94 Source port: 8080 94 Source port: 8080	Destination port: 8080 Destination port: 8080	
	7 2.990404000 8 3.221266000	192.168.0.3 192.168.0.2	192.168.0.2 192.168.0.3	UDP UDP	60 Source port: 8080 60 Source port: 8080	Destination port: 8080 Destination port: 8080	
	9 3.758027000 10 4.294986000	192.168.0.2 192.168.0.2	192.168.0.3 192.168.0.3	UDP UDP	60 Source port: 8080 60 Source port: 8080 60 Source port: 8080	Destination port: 8080 Destination port: 8080	
	12 5.368594000 13 5.905572000	192.168.0.2 192.168.0.2 192.168.0.2	192.168.0.3 192.168.0.3	UDP	60 Source port: 8080 60 Source port: 8080 60 Source port: 8080	Destination port: 8080 Destination port: 8080	
	14 6.442441000 15 6.979215000	192.168.0.2 192.168.0.2	192.168.0.3 192.168.0.3	UDP UDP	60 Source port: 8080 60 Source port: 8080	Destination port: 8080 Destination port: 8080	
	16 7.516174000	192.168.0.2	192.168.0.3	UDP	60 Source port: 8080	Destination port: 8080	Ň
	0000 b4 2e 99 20 c 0010 00 2e 05 0f 4 0020 00 03 1f 90 1 0030 50 47 41 20 6	4 61 00 0a 35 01 fe 0 00 80 11 74 5a ce f 90 00 1a 00 00 6 6 6f 65 76 65 72 a	e c0 08 00 45 00 a 5. 0 a8 00 02 c0 a8 e tZ c 6f 76 65 20 46 8 a1 PGA foev er	love F			
			L 0 /0 00/	5 C II			_
🗍 🔟 Data (data), 18 bytes	Packets: 16 · Displ	ayed: 16 (100.0%) · Dropp	ed: 0 (0.0%) Profile: L	Jefault			

Figure 14.21 The FPGA repackages the received data and sends it to the PC

<u>.</u>	TCP/UDP Net Assistant			- U ×
Settings (1) Protocol UDP (2) Local host addr 192.168.0.10 (3) Local host port 3081 (3) Local h	Data Receive i%Acceive from 192.168.0.10 :8080i/£° Welcome to ZCZNXP World! Welcome to ZCZNXP World! Love FFCA forever! Love FFCA forever!)SA	AGE V4.1.0
Send cyclic	Remote: 192.168.0.10 :8080		•	Clean
Interval 10 ms Load Clear				Send
🕼 Ready!		Send: 0	Recv : 318	Reset

Figure 14.22 Information received by PC from FPGA

log	Trig @	2019/05/24 15:22:38 (0:0:4.4 elapsed) #1																	click to	insert t	ime ba	if												
Тур	e Alias	Name	47	4,8	4p		sp	6,1	5,2	5,3	5,4	s,s	sp	57	s _i a	sp	өр	q 1	62	6,3	6,4	6	ρ e	ip e	7	бр	6p	7p	7,1	72 77	7,4	75	7,6	
4		ndv																											<u> </u>					
		E rxd[3.0]	Sh	XF	h X	Ch	X Eh	X oh) sh	X oh	Xe	n X oh	7h	. (II	Oh	(oh	X Ph	X sh	Xat		ih X	zh	((_1h_	Bh	X 4h	X 9h	X ah	χ			Dh		
6		E ddio_in:ddio_in_inst[datain[40]	15h		Fh X	1Ch	(1Ph	101	X 15h	X 10h	X 18	h X 10ł	X 17		h (10h	X 16h	X 1Fb	X 15h	X 10	h) 1	sh X	12h	(13h)	(11h)	18h	X 14h	X 197	X 18h	X 1Dh				oDh	
6		ddio_in:ddio_in_inst dataout_h[40]	(11h		h X	1Ch		16h	X 17h	(16h	X 12	h (14ł	C 158		14h) 12h		16h			7h X	16h	(17h)		Ah	X 13h	X 18	14h	X 11h					
1		* ddio_in:ddio_in_inst dataout_l[4.0]	(1Ab	Xu	ih X	17h	(1 Ch	X 18	X 16h	X 15h	X 19	h X 161	C 101		h)(11h	X 195	X 16h	X 186	X 15	n X 1	on X	15h	(12h)	(1ah)	(11h	X 18h	X 141	X 19h) 18h				oDh	
6		udp:udp_inst[e_rxd[70]	(1Ab	X	sh X	C7h	X 6Ch	X 6Fh	X 76h	X 65h	X 20	h) 461	501	47	h) 41h) 20h	X 66h	X 6Ph	X 65	h) Z	en X	65h	72h	(A3h)	A1h	X 38h	X F41	49h	X 18h				DDh	
6		udp:udp_inst[ip_receive:ip_receive_inst[datain[70]	906	X	h)	1Ab	D5h	X C7h	00	X ofh	X 76	h X est	201	1 40	h Soh	47h	X 41h	X 20h	X 66	h) e	Fh X	65h	76h	OSh	72h	X Ash	X A11	38h) F4h	(49h)	18h X			DDh
4		udp:udp_inst ip_receive:ip_receive_inst e_rxdv																												1				
6		Udp:udp_inst[ip_receive:ip_receive_inst[data_o[310]						A3A100	ooh					60	eF7eesh			204	65047	h			4120	666Fh		X 657	66572h				A:	Alocoph		
*		udp:udp_inst ip_receive:ip_receive_inst data_o_valid																																
4		udp:udp_inst[ip_receive:ip_receive_inst]data_receive																																
6		udp:udp_inst ip_receive:ip_receive_inst ram_wr_addr[80]						000							001h		X		002h		-x		00	13h		X	004h	X	05h				booh	
6		■ udp:udp_inst[ip_receive:ip_receive_inst[rx_data_length[15.0]																		001Ah														
6		udp:udp_inst ip_receive.ip_receive_inst rx_total_length[15.0]																		002Eh														
4		udp:udp_inst data_o_valid																																
4		udp:udp_inst data_receive																																
6		udp:udp_inst ip_receive:ip_receive_inst rx_state[3.0]				6h												7h) ah	χ			Qh		
		Im udp:udp_inst[ip_receive:ip_receive_inst[state_counter[4.0]	(03h	Xe	th X	05h	X 06h	07h	X														ooh											

Figure 14.23 FPGA end data and stored in the RAM process

It should be noted that Ethernet II specifies the Ethernet frame data field is a minimum of 46 bytes, that is, the minimum Ethernet frame is 6+6+2+46+4=64. The 4-byte FCS is removed, so the packet capture is 60 bytes. When the length of the data field is less than 46 bytes, the MAC sublayer is padded after the data field to satisfy the data frame length of not less than 64 bytes. When communicating over a UDP LAN, "Hello World" often occurs for testing, but "Hello World" does not meet the minimum valid data (64-46) requirements. It is less than 18 bytes but the other party is still available for receiving, because data is complemented in the MAC sublayer of the link layer, less than 18 bytes are padded with '0's. However, when the server is on the public network and the client is on the internal network, if less than 18 bytes of data is transmitted, the receiving end cannot receive the data. Therefore, if there is no data received, the information to be sent should be increased to more than 18 bytes.

Experiment 15 SRAM Read and Write

15.1 Experiment Objective

- (1) Learn the read and write of SRAM
- (2) Review frequency division, button debounce, and hex conversion experiment content

15.2 Experiment Implement

- (1) Control the read and write function of SRAM by controlling the button
- (2) The data written to the SRAM is read out again and displayed on the segment display
- (3) In the process of reading data, it is required to have a certain time interval for each read operation.

15.3 Experiment

15.3.1 Introduction to SRAM

SRAM (Static Random-Access Memory) is a type of random access memory. The "static" means that as long as the power is on, the data in the SRAM will remain unchanged. However, the data will still be lost after power turned off, which is the characteristics of the RAM.

Two SRAMs (IS61WV25616BLL) are on the development board, each SRAM has 256 * 16 words of storage space. Each word is 16-bit. The maximum read and write speed can reach 100 MHz. The physical picture is shown in Figure 15.1.

Figure 15.1 SRAM physical picture

15.3.2 Hardware Design

As shown in Figure 15.2, a set of control signals (low signal is valid): chip selection signal CE, read control signal OE, write enable control number WE, and two byte control signals UB and LB, through CE_N_SRAM, OE_N_SRAM, WE_N_SRAM, UB_N_SRAM, LB_N_SRAM, connect to the FPGA, and the read and write status is controlled by the FPGA. The address is sent to the SRAM through the address line A[17:0]. In the write state, the data to be written is sent to the SRAM through the data line D[15:0], and can be written into the register of the corresponding address; In the read state, the data in the corresponding address register can be directly read into the FPGA by the data line.

Figure 15.2 Schematics of SRAM

15.3.3 Introduction to the Program

This experiment will use the frequency division, button debounce, hex conversion and segment display module. (Refer to the previous experiment for more information) Here SRAM read and write module is mainly introduced.

module sram	ו (
input		IN_CLK_50M,	//System clock on board
input	[7:1]	PB,	//Push buttons
output		sram0_cs_n,	//First SRAM control signal group
output		sram0_we_n,	
output		sram0_oe_n,	
output		sram0_ub_n,	
output		sram0_lb_n,	
output		sram1_cs_n,	//Second SRAM control signal group
output		sram1_we_n,	
output		sram1_oe_n,	
output		sram1_ub_n,	
output		sram1_lb_n,	
output	[17:0]	sram_addr,	//sram adress signal
inout	[31:0]	sram_data,	//sram data signal
output	[5:0]	tube_sel,	// Segment display control signal
output	[7:0]	tube_seg	
);			
endmodule			

The first step: the establishment of the main program framework

The inputs are 50 MHz system clock *IN_CLK_50M*, button module PB[7:1], PB[3] (RETURN) as external hardware reset, PB[2] (UP) as write control, PB[7] (DOWN) as read control. The output has two sets of control signals to control two srams respectively, specifically chip selection signal

sram_cs_n, write control signal sram_we_n, read control signal sram_oe_n, and byte control signals sram_ub_n and sram_lb_n, address bus sram_daddr[17:0], data bus Sram_data[31:0], and the segment display bit selection signal tube_sel[5:0] and the segment selection signal tube_seg[7:0].

The second step: SRAM read and write module

In this experiment, two SRAMs are used simultaneously and are expanded into a 32-bit wide data memory.

reg	[31:0]	wr_data;
reg		wr_en;
reg	[3:0]	state;
reg	[7:1]	PB_flag;
reg		wr_done;
reg		rd_done;
reg		s_flag;
assign srar	m_data = v	wr_en ? wr_data : 32'hz;
always @ (po	sedge clk)	
begin		
if (!rst_n)	
beg	in	
	wr_done	e <= 1'b0;
	rd_done	<= 1'b0;
	rd_data	<= 32'd0;
	wr_data	<= 32'd0;
	sram0_c	s_n <= 1'b1;
	sram0_v	ve_n <= 1'b1;
	sram0_o	be_n <= 1'b1;

```
sram0_ub_n <= 1'b1;</pre>
          sram0_lb_n <= 1'b1;</pre>
          sram1_cs_n <= 1'b1;</pre>
          sram1_we_n <= 1'b1;</pre>
          sram1_oe_n <= 1'b1;</pre>
          sram1_ub_n <= 1'b1;</pre>
          sram1_lb_n <= 1'b1;</pre>
          sram_addr <= 18'd0;</pre>
          wr_en <= 1'b0;
          state <= 4'd0;
     end
else
     case(state)
          0 :
          begin
               wr_done <= 1'b0;
               rd_done <= 1'b0;
               sram_addr
                              <= 18'd511;
               wr_data
                              <= 32'd123456;
               if (PB_flag[2])
                    begin
                         wr_en <= 1'b1;
                         state <= 4'd1;
```

);
);

sram0_we_n <= 1'b0;</pre>

sram0_oe_n <= 1'b1;</pre>

sram0_ub_n <= 1'b0;</pre>

sram0_lb_n <= 1'b0;

sram1_cs_n <= 1'b0; sram1_we_n <= 1'b0; sram1_oe_n <= 1'b1; sram1_ub_n <= 1'b0;</pre>

sram1_lb_n <= 1'b0;

```
end
```

else if (PB_flag[7])

begin

wr_en <= 1'b0;

state <= 4'd2;

sram0_cs_n <= 1'b0;</pre>

sram0_we_n <= 1'b1;</pre>

sram0_oe_n <= 1'b0;</pre>

sram0_ub_n <= 1'b0;</pre>

sram0_lb_n <= 1'b0;

sram1_cs_n <= 1'b0;</pre>

sram1_we_n <= 1'b1;</pre>

aram 1 as m = 1 b.

sram1_oe_n <= 1'b0;</pre>

sram1_ub_n <= 1'b0;</pre>
```
sram1_lb_n <= 1'b0;</pre>
         end
    else
         state<= 4'd0;
end
1 :
begin
    if (sram_addr == 18'd0)
         begin
             state<= 4'd4;
             wr_done <= 1'b1;
             wr_en <= 1'b0;
         end
    else
         begin
                      <= 4'd1;
             state
             sram_addr
                           <= sram_addr - 1'b1;
                           <= wr_data - 1'b1;
             wr_data
         end
end
2
  :
begin
    if (sram_addr == 18'd0)
         state<= 4'd4;
    else
```

```
state<= 4'd2;
          if (s_flag)
                begin
                     sram_addr <= sram_addr - 1'b1;</pre>
                     rd_data
                                     <= sram_data;
                     rd_done
                                     <= 1'b1;
                end
          else
                rd_done <= 1'b0;</pre>
end
     :
begin
     sram0_cs_n <= 1'b1;</pre>
     sram0_we_n <= 1'b1;</pre>
     sram0_oe_n <= 1'b1;</pre>
     sram0_ub_n <= 1'b1;</pre>
     sram0_lb_n <= 1'b1;</pre>
     sram1_cs_n <= 1'b1;</pre>
     sram1_we_n <= 1'b1;</pre>
     sram1_oe_n <= 1'b1;</pre>
     sram1_ub_n <= 1'b1;</pre>
     sram1_lb_n <= 1'b1;</pre>
```

wr_done <= 1'b0;

4

rd_done <= 1'b0;

```
state <= 0;
end
default : state <= 0;
endcase
end
```

In the write state, the write enable *wr_en* is pulled high. At this time, *sram_data* is the data *wr_data* to be written. In other cases, the write enable is pulled low. In the read state, the data is directly read into the FPGA by *sram_data*.

At reset, the SRAM control signals are all pulled high, then jumps to the 0 state, and the data is read and written by the state machine.

0 state: an initial address "511" is given, and an initial data "123456", when the write enable signal *PB_flag[2]* is valid, the chip selection signal pulls down the selected SRAM. The write control signal is pulled low to prepare for write operation, and the read control signal remains pulled up. Meanwhile, the byte control signal is pulled low, indicating that the high and low two bytes of data are simultaneously written and then jump to the 1 state. When the read enable signal *PB_flag[7]* is active, in contrast to the write enable, the write control signal is held high, the read control signal is pulled low to prepare for the read operation, and jumps to the 2 state.

1 state: starting from the initial address "511", writing initial data "123456", each clock cycle address and data are simultaneously decremented by one, performing 512 data continuous write operations. When the register address bit is '0', end the write operation and jum to the 4 state.

2 state: Starting from the initial address "511", the address is decremented by 1 every 1 second under the control of the second pulse *s_flag*, and a continuous read operation of 512 data is performed. When the data is completely read, the address jumps to the 4 state when the address is '0'.

4 state: The control signals are all pulled high, deactivate the control of the SRAM, jumping to the '0' state, an waiting for the next operation.

15.4 Experiment Verification

The first step: pin assignment

Table 15.1 SRAM read and write experiment pin mapping

Signal Name	Network Label	FPGA Pin	Port Description
IN_CLK_50M	CLK_50M	G21	System clock 50 MHz
PB[1]	PB[1]	Y4	
PB[2]	PB[2]	V5	-
PB[3]	PB[3]	Y6	-
PB[4]	PB[4]	AB4	7 push buttons on board
PB[5]	PB[5]	Y3	-
PB[6]	PB[6]	AA4	-
PB[7]	PB[7]	AB3	-
sram0_cs_n	CE_N_SRAM0	F21	
sram0_we_n	WE_N_SRAM0	B22	-
sram0_oe_n	OE_N_SRAM0	F17	First SRAM control signal
sram0_ub_n	UB_N_SRAM0	K22	-
sram0_lb_n	LB_N_SRAM0	K21	-
sram1_cs_n	CE_N_SRAM1	N22	
sram1_we_n	WE_N_SRAM1	R19	_
sram1_oe_n	OE_N_SRAM1	Y21	Second SRAM control
sram1_ub_n	UB_N_SRAM1	Y22	Signai
sram1_lb_n	LB_N_SRAM1	T18	_
sram_addr[0]	A_R_0	J21	
sram_addr[1]	A_R_1	H22	_
sram_addr[2]	A_R_2	H19	_
sram_addr[3]	A_R_3	G18	_
sram_addr[4]	A_R_4	H17	_
sram_addr[5]	A_R_5	H21	
sram_addr[6]	A_R_6	H20	
sram_addr[7]	A_R_7	F19	
sram_addr[8]	A_R_8	H18	

sram_addr[9]	A_R_9	F20	SRAM address line
sram_addr[10]	A_R_10	W21	
sram_addr[11]	A_R_11	W22	
sram_addr[12]	A_R_12	V21	
sram_addr[13]	A_R_13	U20	
sram_addr[14]	A_R_14	V22	
sram_addr[15]	A_R_15	R21	
sram_addr[16]	A_R_16	U21	
sram_addr[17]	A_R_17	R22	
sram_addr[18]	A_R_18	U22	
sram_data[0]	D_R_0	F22	
sram_data[1]	D_R_1	E21	
sram_data[2]	D_R_2	D21	
sram_data[3]	D_R_3	E22	
sram_data[4]	D_R_4	D22	
sram_data[5]	D_R_5	C21	
sram_data[6]	D_R_6	B21	
sram_data[7]	D_R_7	C22	
sram_data[8]	D_R_8	M16	
sram_data[9]	D_R_9	K19	
sram_data[10]	D_R_10	M20	
sram_data[11]	D_R_11	M19	
sram_data[12]	D_R_12	L22	
sram_data[13]	D_R_13	L21	
sram_data[14]	D_R_14	J22	
sram_data[15]	D_R_15	J18	
sram_data[16]	D_R_16	M21	SKAM data line
sram_data[17]	D_R_17	K18	

	N21	D_R_18	sram_data[18]
	M22	D_R_19	sram_data[19]
	P22	D_R_20	sram_data[20]
	P20	D_R_21	sram_data[21]
	R20	D_R_22	sram_data[22]
	P21	D_R_23	sram_data[23]
	W19	D_R_24	sram_data[24]
	W20	D_R_25	sram_data[25]
	R17	D_R_26	sram_data[26]
	T17	D_R_27	sram_data[27]
	U19	D_R_28	sram_data[28]
	AA21	D_R_29	sram_data[29]
	AA22	D_R_30	sram_data[30]
	R18	D_R_31	sram_data[31]
	F14	SEG_3V3_D0	tube_sel[0]
	D19	SEG_3V3_D1	tube_sel[1]
Segment display bit	E15	SEG_3V3_D2	tube_sel[2]
	E13	SEG_3V3_D3	tube_sel[3]
	F11	SEG_3V3_D4	tube_sel[4]
	E12	SEG_3V3_D5	tube_sel[5]
	B15	SEG_PA	tube_seg[0]
	E14	SEG_PB	tube_seg[1]
	D15	SEG_PC	tube_seg[2]
Segment display	C15	SEG_PD	tube_seg[3]
- segment selection signal	F13	SEG_PE	tube_seg[4]
]	E11	SEG_PF	tube_seg[5]
]	B16	SEG_PG	tube_seg[6]
]	A16	SEG_DP	tube_seg[7]
			,

The second step: board verification

After the pin assignment is completed, the compilation is performed, and the board is verified after passing.

After the development board is programmed, the segment display will all light up, but because no data is read, the segment display will display all '0's, as shown in Figure 15.3. Press the PB[2] (UP) button to write the data to the SRAM, and then press the PB[7] (DOWN) button to read the written data. At this time, it displays "123456" and decrement by one every second. See Figure 15.4. From this it is verified that the specified data is written into the SRAM and is read correctly.

Figure 15.3 SRAM write and read 1

Figure 15.4 SRAM write and read 2

Experiment 16 8978 Audio Loopback Experiment

16.1 Experiment Objective

- (1) Learn about I2S (Inter-IC Sound) bus and how it works
- (2) Familiar with the working mode of WM8978. And by configuring the interface mode and selecting the relevant registers in combination with the development board, complete the data transmission and reception, and verify it

16.2 Experiment Implement

- (1) Perform audio loopback test by configuring the onboard audio chip WM8978 to check if the hardware is working properly
- (2) Adjust the volume output level with the keys.

16.3 Experiment

16.3.1 WM8978 Introduction

WM8978 is a low power, high quality stereo multimedia digital signal CODEC introduced by Wolfson. It is mainly used in portable applications such as digital cameras and camcorders. Advanced on-chip digital signal processing includes a 5-band equaliser, a mixed signal Automatic Level Control for the microphone or line input through the ADC as well as a purely digital limiter function for record or playback. Additional digital filtering options are available in the ADC path, to cater for application filtering, such as "wind noise reduction".

See Figure 16.1 for the internal structure block diagram of WM8978.

Figure 16.1 WM8978 internal structure block diagram

Figure 16.2 Schematics of the audio part of the development board

16.3.2 WM8978 Control Interface Timing

The WM8978 control interface has two-wire mode and three-wire mode. The specific mode is selected by the MODE pin connection of WM8978. When the mode pin is connected to a low voltage level, it is a two-wire mode, and when it is connected to a high voltage level, it is a three-wire mode. The development board mode pin is grounded. When the control interface is in two-wire mode, the timing diagram is shown in Figure 16.3. The timing diagram is the same as the IIC timing. The device address of WM8978 is fixed to 7'b0011010. This chip register only supports writing and does not support reading.

Figure 16.3 Timing diagram of the two-wire mode interface

16.3.3 I2S Audio Bus Protocol

I2S (Inter-IC Sound Bus) is just a branch of PCM, the interface definition is the same, I2S sampling frequency is generally 44.1KHz and 48KHz, PCM sampling frequency is generally 8K, 16K. There are four groups of signals: bit clock signal, synchronization signal, data input, data

output.

I2S is a bus standard developed by Philips for audio data transmission between digital audio devices. In the Philips I2S standard, both the hardware interface specification and the format of digital audio data are specified. I2S has three main signals: the serial clock *SCLK*, also known as the bit clock *BCLK*, which corresponds to each bit of data of digital audio. The frequency of SCLK = 2 × sampling frequency × sampling number of bits. The frame clock *LRCK* is used to switch the data of the left and right channels. An LRCK of "0" indicates that data of the left channel is being transmitted, and "1" indicates that data of the right channel is being transmitted. LRCLK == FS, is the sampling frequency serial data SDATA, which is audio data expressed in two's complement. Sometimes in order to enable better synchronization between systems, another signal MCLK is needed, which is called the master clock, or also called the system Clock (System Clock). It is 256 or 384 times the sampling frequency.

The timing of the I2S protocol is shown in Figure 16.4. However many bits of data the I2S format signal has, the most significant bit of the data always appears at the second BCLK pulse after the LRCK change (that is, the beginning of a frame). This allows the number of significant digits at the receiving end and the transmitting end to be different. If the receiving end can process less significant bits than the transmitting end, the extra low-order data in the data frame can be discarded; if the receiving end can process more significant bits than the transmitting end, it can make up the remaining bits by itself. This synchronization mechanism makes the interconnection of digital audio equipment more convenient without causing data errors.

Figure 16.4 I2S timing protocol

16.3.4 Main Program Design

WM8978 register configuration program
 Only the program of register configuration program is given here, please refer to the project file for the complete program

module wm8978_config

(

input clk_50m,

output reg cfg_done=0,

input rst_n,

input rxd,

output txd,

input key1,

input key2,

output i2c_sclk,

inout i2c_sdat

);

wire tr_end;

reg [4:0] i;

reg [23:0] i2c_data_r=0;

wire [7:0] data_read ;

reg [7:0] read_req ;

reg uart_rd =0;

reg uart_wr =0;

reg [7:0] txd_i2c_data;

reg txd_start = 0;

wire txd_busy;

wire [7:0] rxd_i2c_data;

wire rxd_ready;

wire rxd_eop;

```
wire test_pin;
uart_transceiver uart_transceiver_inst
(
               (clk_50m), // 50m
    .sys_clk
    .uart_rx
               (rxd),
    .uart_tx (txd),
                (55), // 115200 * 8
    .divisor
    .rx_data (rxd_i2c_data),
    .rx_done
                 (rxd_ready),
    .rx_eop
                 (rxd_eop),
    .tx_data (txd_i2c_data),
    .tx_wr
                 (txd_start),
    .tx_done
                 (),
    .tx_busy
                (txd_busy),
                (),
    .test_pin
    .sys_rst ()
);
reg rx_end_ack = 0;
reg rx_end = 0;
always @ (posedge clk_50m)
if(rxd_eop) rx_end <= 1;</pre>
else if(rx_end_ack) rx_end <= 0;</pre>
```

```
reg [7:0] cmd_dir = 0;
reg [3:0] uart_st = 0;
always @ (posedge clk_50m)
if(cfg_done == 0)
begin
    rx_end_ack <= 0;</pre>
    uart_wr <= 0;
    uart_rd <= 0;
    uart_st <= 0;
end
else case(uart_st)
0:
begin
    rx_end_ack <= 0;</pre>
    uart_wr <= 0;
    uart_rd <= 0;
    if(rxd_ready)
     begin
          cmd_dir <= rxd_i2c_data;
         uart_st <= 1;
     end
end
1:
begin
     if(rxd_ready)
     begin
```

```
i2c_data_r[23:16] <= rxd_i2c_data;
         uart_st <= 2;
    end
end
2:
begin
    if(rxd_ready)
    begin
         i2c_data_r[15:08] <= rxd_i2c_data;
         if(cmd_dir[0]) uart_st <= 5;</pre>
         else uart_st <= 3;
    end
end
3: // write
begin
    if(rxd_ready)
    begin
         i2c_data_r[07:00] <= rxd_i2c_data;
         uart_wr <= 1;
         uart_st <= 4;
    end
end
4:
begin
    if(tr_end)
    begin
         uart_wr <= 0;
         uart_st <= 7;
```

```
end
end
5: //read
begin
    uart_rd <= 1;
     uart_st <= 6;
end
6:
begin
    uart_rd <= 0;
    if(tr_end)
     begin
          txd_i2c_data <= data_read;</pre>
          txd_start <= 1;</pre>
          uart_st <= 7;
     end
end
7:
begin
    txd_start <= 0;
     if(rx_end)
     begin
          rx_end_ack <= 1;</pre>
         uart_st <= 0;
     end
     else rx_end_ack <= 0;
```

```
end
endcase
reg start;
//parameter define
reg [5:0] PHONE_VOLUME = 6'd32;
reg [5:0] SPEAK_VOLUME = 6'd32;
     [31:0] i2c_data=0;
reg
     [7:0] start_init_cnt;
reg
reg
     [4:0] init_reg_cnt ;
reg [25:0] on_counter;
reg [25:0] off_counter;
  reg key_up, key_down;
always @(posedge clk_50m , negedge cfg_done)
   if (!cfg_done) begin
        on_counter<=0;
        off_counter<=0;
         key_up<=1'b0;
         key_down<=1'b0;</pre>
      end
```

```
else begin
         if (key1==1'b1)
             on_counter<=0;
         else if ((key1==1'b0)& (on_counter<=500000))
            on_counter<=on_counter+1'b1;</pre>
        if (on_counter==49950)
                 key_up<=1'b1;</pre>
          else
                 key_up<=1'b0;</pre>
         if (key2==1'b1)
             off_counter<=0;
         else if ((key2==1'b0)& (off_counter<=500000))
            off_counter<=off_counter+1'b1;
        if (off_counter==49950)
                 key_down<=1'b1;</pre>
          else
                 key_down<=1'b0;
     end
always @(posedge clk_50m , negedge cfg_done)
   if (!cfg_done) begin
         PHONE_VOLUME <=6'd32;
       end
     else begin
            if (( 2<=PHONE_VOLUME )&( PHONE_VOLUME <=56)&(on_counter==49948))
```

```
PHONE_VOLUME <= PHONE_VOLUME+6 ;</pre>
           else if (( 8<=SPEAK_VOLUME )&( SPEAK_VOLUME <=62)& (off_counter==49948))
                   PHONE_VOLUME <= PHONE_VOLUME-6 ;</pre>
           else PHONE_VOLUME <= PHONE_VOLUME ;
          end
always @ ( posedge clk_50m )
       if( rst_n==1'b0 ) begin
              i <= 5'd0;
              read_req<=0;
              i2c_data <= 32'h000000;
              start <= 1'b0;
              cfg_done <=0;
     end
     else begin
         case(i)
          0: begin
                  if( tr_end ) begin start <= 1'b00; i <= i + 1'b1; end
                  else begin start <= 1'b1; i2c_data <= {7'h1a,1'b0,8'h00,7'd0,9'b1}; end
               end
          1: begin
                   if( tr_end ) begin start <= 1'b0; i <= i + 1'b1; end
                   else begin start <= 1'b1; i2c_data <={7'h1a,1'b0,
8'h00,7'd1,9'b1_0010_1111}; end
               end
```

2: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <= {7'h1a,1'b0,8'h00,7'd2 ,9'b1_1011_0011}; end end 3: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <= {7'h1a,1'b0,8'h00,7'd3,9'b0_0110_1111}; end end 4: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <= {7'h1a,1'b0,8'h00,7'd4 ,{2'd0,2'b11,5'b10000}}; end end 5: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <={7'h1a,1'b0,8'h00,7'd6,9'b0_0000_0001}; end end 6: begin if(tr_end) begin start <= 2'b00; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data<= {7'h1a,1'b0,8'h00,7'd7 ,9'b0_0000_0001}; end end

7: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <= {7'h1a,1'b0,8'h00,7'd10,9'b0_0000_1000}; end end 8: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <= ${7'h1a,1'b0,8'h00,7'd14,9'b1_0000_1000}; end$ end 9: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <= {7'h1a,1'b0,8'h00,7'd43,9'b0_0001_0000}; end end 10: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <={7'h1a,1'b0,8'h00,7'd47,9'b0_0111_0000}; end end 11: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <={7'h1a,1'b0,8'h00,7'd48,9'b0_0111_0000}; end end

12: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <={7'h1a,1'b0,8'h00,7'd49,9'b0_0000_0110}; end end 13: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <= {7'h1a,1'b0,8'h00,7'd50,9'b1 };end end 14: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <= {7'h1a,1'b0,8'h00,7'd51,9'b1 };end end 15: begin if(tr_end) begin start <= 1'b0; i <= i + 1'b1; end else begin start <= 1'b1; i2c_data <={7'h1a,1'b0,8'h00,7'd52,{3'b010,PHONE_VOLUME}};end end 16: begin if(tr_end) begin start <= 1'b0; i <= i + 1; end else begin start <= 1'b1; i2c_data <= {7'h1a,1'b0,8'h00,7'd53,{3'b110,PHONE_VOLUME}};end end 17: begin

238 / 304

```
cfg_done<=1;
       if (uart_wr)
            begin
                 start <= 1'b1;
                 i2c_data <={cmd_dir,i2c_data_r};</pre>
                 i<=i+1 ;
            end
       if (uart_rd)
            begin
                 read_req <= 1'b1;</pre>
                 i2c_data <={cmd_dir,i2c_data_r};</pre>
                 i<=i+2;
            end
       if (key_up|key_down)
         i<= 15;
    end
18: begin
       if( tr_end ) begin start <= 1'b0; i <=19; end
       else i<=20;
    end
19: begin
       if( tr_end ) begin read_req <= 1'b0; i <= 19; end
       else begin i<=21;end
    end
default:i<=1
              ;
```

```
endcase
         end
i2c_control i2c_control_inst (
    .Clk (clk_50m),
    .Rst_n(rst_n),
    .wrreg_req(start) ,
    .rdreg_req (read_req),
    .addr({i2c_data[15:8],i2c_data[23:16]}) , //16bit
    .addr_mode(0),
    .wrdata (i2c_data[7:0]),
                                   //
    .rddata (data_read),
                             //8bit
    .device_id (i2c_data[31:24]), //8bit
    .RW_Done(tr_end),
    .ack (),
    .i2c_sclk(i2c_sclk),
    .i2c_sdat(i2c_sdat)
);
endmodule
```

2. Audio signal acquisition program

module audio_receive (
//system clock 50MHz		
input	rst_n	,
//wm8978 interface		
input	aud_bclk	,
input	aud_lrc	,

```
aud_adcdat,
    input
    //user interface
    output
               reg
                              rx_done
                                          ,
    output
               reg [31:0] adc_data
);
parameter WL = 6'd32;
                    aud_lrc_d0;
reg
       [ 5:0]
                 rx_cnt;
reg
       [31:0]
                  adc_data_t;
reg
wire
                   lrc_edge ;
         lrc_edge = aud_lrc ^ aud_lrc_d0;
assign
always @(posedge aud_bclk or negedge rst_n) begin
    if(!rst_n)
         aud_lrc_d0 <= 1'b0;
    else
         aud_lrc_d0 <= aud_lrc;</pre>
end
always @(posedge aud_bclk or negedge rst_n) begin
    if(!rst_n) begin
         rx_cnt <= 6'd0;
    end
    else if(lrc_edge == 1'b1)
         rx_cnt <= 6'd0;
    else if(rx_cnt < 6'd35)
         rx_cnt <= rx_cnt + 1'b1;</pre>
end
always @(posedge aud_bclk or negedge rst_n) begin
    if(!rst_n) begin
         adc_data_t <= 32'b0;
    end
     else if(rx_cnt < WL)
         adc_data_t[WL - 1'd1 - rx_cnt] <= aud_adcdat;</pre>
always @(posedge aud_bclk or negedge rst_n) begin
    if(!rst_n) begin
         rx_done
                     <= 1'b0;
         adc_data <= 32'b0;
```

```
end
else if(rx_cnt == 6'd32) begin
    rx_done <= 1'b1;
    adc_data<= adc_data_t;
end
else
    rx_done <= 1'b0;
end</pre>
```

```
endmodule
```

3. Audio sending module

```
module audio_send (
    input
                              rst_n
                                        ,
                              aud_bclk ,
    input
    input
                              aud_lrc
              reg
                              aud_dacdat,
    output
    input
                   [31:0]
                             dac_data ,
                              tx_done
    output
              reg
);
parameter WL = 6'd32;
reg
                   aud_lrc_d0;
       [ 5:0]
              tx_cnt;
reg
reg
       [31:0]
                 dac_data_t;
wire
                   lrc_edge;
assign lrc_edge = aud_lrc ^ aud_lrc_d0;
always @(posedge aud_bclk or negedge rst_n) begin
    if(!rst_n)
         aud_lrc_d0 <= 1'b0;
    else
         aud_lrc_d0 <= aud_lrc;</pre>
end
always @(posedge aud_bclk or negedge rst_n) begin
    if(!rst_n) begin
```

```
<= 6'd0;
          tx_cnt
          dac_data_t <= 32'd0;</pre>
     end
     else if(lrc_edge == 1'b1) begin
          tx_cnt
                    <= 6'd0;
          dac_data_t <= dac_data;</pre>
    end
     else if(tx_cnt < 6'd35)
          tx_cnt <= tx_cnt + 1'b1;</pre>
end
always @(posedge aud_bclk or negedge rst_n) begin
     if(!rst_n) begin
          tx_done <= 1'b0;
     end
    else if(tx_cnt == 6'd32)
          tx_done <= 1'b1;</pre>
    else
          tx_done <= 1'b0;</pre>
end
always @(negedge aud_bclk or negedge rst_n) begin
     if(!rst_n) begin
          aud_dacdat <= 1'b0;</pre>
    end
    else if(tx_cnt < WL)
          aud_dacdat <= dac_data_t[WL - 1'd1 - tx_cnt];</pre>
    else
          aud_dacdat <= 1'b0;</pre>
end
endmodule
```

4. Main program

	1 0		
module audio_test(
	input	wire	sys_clk_50,
	input	wire	rst_n,
	input		rxd,
	output		txd,
	input input output	wire	rst_n, rxd, txd,

```
[7:0]
    output
                              led ,
    input
                           key1,
    input
                                key2,
    inout
                                wm_sdin,
    output
                                wm_sclk,
                  wire
                           wm_lrc,
    input
                  wire
                           wm_bclk,
    input
                              adcdat,
                 wire
    input
                           dacdat,
    output
                 wire
    output
                  wire
                           mclk
    );
wire cfg_done ;
assign led ={7'h7f,~cfg_done};
pll_50_12 pll_50_12_inst
   (
    // Clock out ports
    .c0(clk_out_12),
                       // output clk_out_12
    // Status and control signals
    .areset(~rst_n), // input reset
                           // output locked
    .locked(locked),
   // Clock in ports
    .inclk0(sys_clk_50)); // input sys_clk_50
wire clk_out_12;
assign mclk = clk_out_12 ;
wm8978_config wm8978_config_inst
(
    .key1
                  (key1),
```

```
.key2
                  (key2),
     .clk_50m
                  (sys_clk_50),
    .rst_n
                  (rst_n)
                               ,
    .cfg_done
                 (cfg_done) ,
    .i2c_sclk
                (wm_sclk)
                             ,
     .rxd
                 (rxd),
    .txd
                 (txd),
    .i2c_sdat
                (wm_sdin)
);
wire [31:0] adc_data ;
audio_receive
 audio_receive_inst(
    .rst_n
                     (rst_n),
    .aud_bclk
                      (wm_bclk),
    .aud_lrc
                     (wm_lrc),
    .aud_adcdat
                      (adcdat),
     .adc_data
                      (adc_data),
    .rx_done
                      (rx_done)
);
    audio_send audio_send_inst(
     .rst_n
                     (rst_n),
     .aud_bclk
                      (wm_bclk),
     .aud_lrc
                     (wm_lrc),
     .aud_dacdat
                      (dacdat),
     .dac_data
                      (adc_data),
     .tx_done
                      (tx_done)
```

);

16.4 Experiment Verification

1. Pin assignment

Signal Name	Port Description	Network Label	FPGA Pin	
Sys_clk_50	System 50M clock	C10_50MCLK	G21	
Reset_n	System reset signal	KEY1	Y4	
Wm_sdin	8978 register I2C_SDA		C13	
	configuration data line			
Wm_sclk	8978 register I2C_SCL		D13	
	configuration clock			
Wm_Irc	8978 align clock	WM_LRCK	AB19	
Wm_bclk	8978 bit clock	WM_BCLK	AA19	
adcdat	ADC input of 8978	WM_MISO	AA18	
Dacdat	DAC input of 8978	WM_MOSI	Y17	
Mack	PLL provides 8978 working	WM_MCLK	W17	
	master clock			
Key1	Volume up button	Key2 V5		
Key2	Volume down button	Key7 AB3		
txd	Serial transmit	TTL_RX	E16	
rxd	Serial receive	TTL_TX	F15	

2. Board verification

As shown in Figure 16.5 below, after the FPGA development board is programmed, use a dual male audio cable, with one end plugged into the red audio receiver end and the other end plugged into a music player. Plug the headphone into the green audio playback port. The music can be heard from player. The volume is divided into 5 gears. Press the UP key to increase the volume and press the down key to decrease the volume.

Figure 16.5 wm8978 board verification

Experiment 17 Photo Display Experiment of OV5640 Camera

17.1 Experiment Objective

- (1) Understand the power-on sequence of the OV5640 camera and the corresponding register configuration process when outputting images of different resolutions
- (2) Review previous knowledge of IIC bus
- (3) Review previous knowledge of HDMI

17.2 Experiment Implement

- (1) Read the power-on sequence of the OV5640 datasheet, and correctly write the poweron control program according to the peripheral module schematics.
- (2) Correctly write the configuration program of the OV5640 camera with a resolution of 640X480 according to the timing requirements of the SCCB interface
- (3) Based on previous experiments, write a program to store the image data collected by 5640 in the development board SRAM.
- (4) Write a program to display the image stored in the SRAM to the monitor via HDMI.
- (5) The refresh of the image is controlled by the keys, and the screen display image is updated every time pressing it, similar to a camera.

17.3 Experiment

Some main procedures are given below. Refer the project file for the complete program

(1) Ov5640 power-on initialization program design is based on the power-on timing diagram of 5640 when connected to DVDD. Shown in Figure 17.1.

Figure 17.1 5640 power-on sequence

Power-on sequence program is as follows:

```
module power_on_delay(clk_50M,reset_n_r,camera_pwup,initial_en,cam_resetb);
```

input clk_50M;

input reset_n_r;

output camera_pwup;

output initial_en;

(*mark_debug="true"*)output reg cam_resetb =0;

(*mark_debug="true"*)reg [31:0]cnt1=0;

reg initial_en=0;

reg camera_pwup_reg=0;

reg reset_n =0;

assign camera_pwup=camera_pwup_reg;

always @ (posedge clk_50M)

reset_n<=reset_n_r ;</pre>

//5ms, delay from sensor power up stable to Pwdn pull down

always@(posedge clk_50M)

begin

```
if(reset_n==1'b0)
```

cnt1<=0;

else

begin

if (cnt1<5000000)

cnt1<=cnt1+1;

else cnt1<=cnt1 ;

end

end

```
always@(posedge clk_50M)
begin
  if(reset_n==1'b0) begin
        camera_pwup_reg<=0;</pre>
  end
else begin
       if (cnt1==1500000)
         camera_pwup_reg<=1;</pre>
        else camera_pwup_reg<=camera_pwup_reg;
     end
end
always@(posedge clk_50M)
begin
  if(reset_n==1'b0) begin
      cam_resetb <=0;</pre>
  end
else begin
       if (cnt1==3500000)
        cam_resetb <=1;</pre>
        else cam_resetb <=cam_resetb ;</pre>
     end
end
always@(posedge clk_50M)
begin
```

```
if(reset_n==1'b0) begin
    initial_en<=0;
end
else
    begin
    if (cnt1==48000000)
    initial_en<=1;
    else initial_en;
end
end
endmodule</pre>
```

$(2) \quad 5640 \ chip \ configuration \ program$

After the development board is powered on correctly, the OV5640 related registers will be configured. The configuration of the OV5640 chip's internal registers is performed through the SCCB (Serial Camera Control Bus) protocol. This protocol is equivalent to a simple I2C bus. The SCCB timing is shown in Figure 17.2. When configuring, use the I2C code from previous experiment directly.

The registers required to complete the 5640 camera function are as follows:

1:reg_data<=24'h300882;

2:reg_data<=24'h300842;

3:reg_data<=24'h310303;

4:reg_data<=24'h3017ff;

5:reg_data<=24'h3018ff;

6:reg_data<=24'h30341A;

7:reg_data<=24'h303713;

8:reg_data<=24'h310801;

9:reg_data<=24'h363036;

10:reg_data<=24'h36310e;

11:reg_data<=24'h3632e2;

12:reg_data<=24'h363312;

13:reg_data<=24'h3621e0;

14:reg_data<=24'h3704a0;

15:reg_data<=24'h37035a;

16:reg_data<=24'h371578;

17:reg_data<=24'h371701;

18:reg_data<=24'h370b60;

19:reg_data<=24'h37051a;

20:reg_data<=24'h390502;

21:reg_data<=24'h390610;

22:reg_data<=24'h39010a;

23:reg_data<=24'h373112;

24:reg_data<=24'h360008;

25:reg_data<=24'h360133;

26:reg_data<=24'h302d60;

27:reg_data<=24'h362052;

28:reg_data<=24'h371b20;
29:reg_data<=24'h471c50;

30:reg_data<=24'h3a1343;

31:reg_data<=24'h3a1800;

32:reg_data<=24'h3a19f8;

33:reg_data<=24'h363513;

34:reg_data<=24'h363603;

35:reg_data<=24'h363440;

36:reg_data<=24'h362201;

37:reg_data<=24'h3c0134;

38:reg_data<=24'h3c0428;

39:reg_data<=24'h3c0598;

40:reg_data<=24'h3c0600;

41:reg_data<=24'h3c0708;

42:reg_data<=24'h3c0800;

43:reg_data<=24'h3c091c;

44:reg_data<=24'h3c0a9c;

45:reg_data<=24'h3c0b40;

46:reg_data<=24'h381000;

47:reg_data<=24'h381110;

48:reg_data<=24'h381200;

49:reg_data<=24'h370864;

50:reg_data<=24'h400102;

51:reg_data<=24'h40051a;

52:reg_data<=24'h300000;

53:reg_data<=24'h3004ff;

54:reg_data<=24'h300e58;

55:reg_data<=24'h302e00;

56:reg_data<=24'h430061;

57:reg_data<=24'h501f01;

58:reg_data<=24'h440e00;

59:reg_data<=24'h5000a7;

60:reg_data<=24'h3a0f30;

61:reg_data<=24'h3a1028;

62:reg_data<=24'h3a1b30;

63:reg_data<=24'h3a1e26;

64:reg_data<=24'h3a1160;

65:reg_data<=24'h3a1f14;

66:reg_data<=24'h580023;

67:reg_data<=24'h580114;

68:reg_data<=24'h58020f;

69:reg_data<=24'h58030f;

70:reg_data<=24'h580412;

71:reg_data<=24'h580526;

72:reg_data<=24'h58060c;

73:reg_data<=24'h580708;

74:reg_data<=24'h580805;

75:reg_data<=24'h580905;

76:reg_data<=24'h580a08;

77:reg_data<=24'h580b0d;

78:reg_data<=24'h580c08;

79:reg_data<=24'h580d03;

80:reg_data<=24'h580e00;

81:reg_data<=24'h580f00;

82:reg_data<=24'h581003;

83:reg_data<=24'h581109;

84:reg_data<=24'h581207;

85:reg_data<=24'h581303;

86:reg_data<=24'h581400;

87:reg_data<=24'h581501;

88:reg_data<=24'h581603;

89:reg_data<=24'h581708;

90:reg_data<=24'h58180d;

91:reg_data<=24'h581908;

92:reg_data<=24'h581a05;

93:reg_data<=24'h581b06;

94:reg_data<=24'h581c08;

95:reg_data<=24'h581d0e;

96:reg_data<=24'h581e29;

97:reg_data<=24'h581f17;

98:reg_data<=24'h582011;

99:reg_data<=24'h582111;

100:reg_data<=24'h582215;

101:reg_data<=24'h582328;

102:reg_data<=24'h582446;

103:reg_data<=24'h582526;

104:reg_data<=24'h582608;

105:reg_data<=24'h582726;

106:reg_data<=24'h582864;

107:reg_data<=24'h582926;

108:reg_data<=24'h582a24;

109:reg_data<=24'h582b22;

110:reg_data<=24'h582c24;

111:reg_data<=24'h582d24;

112:reg_data<=24'h582e06;

113:reg_data<=24'h582f22;

114:reg_data<=24'h583040;

115:reg_data<=24'h583142;

116:reg_data<=24'h583224;

117:reg_data<=24'h583326;

118:reg_data<=24'h583424;

119:reg_data<=24'h583522;

120:reg_data<=24'h583622;

121:reg_data<=24'h583726;

122:reg_data<=24'h583844;

123:reg_data<=24'h583924;

124:reg_data<=24'h583a26;

125:reg_data<=24'h583b28;

126:reg_data<=24'h583c42;

127:reg_data<=24'h583dce;

128:reg_data<=24'h5180ff;

129:reg_data<=24'h5181f2;

130:reg_data<=24'h518200;

131:reg_data<=24'h518314;

132:reg_data<=24'h518425;

133:reg_data<=24'h518524;

134:reg_data<=24'h518609;

135:reg_data<=24'h518709;

136:reg_data<=24'h518809;

137:reg_data<=24'h518975;

138:reg_data<=24'h518a54;

139:reg_data<=24'h518be0;

140:reg_data<=24'h518cb2;

141:reg_data<=24'h518d42; 142:reg_data<=24'h518e3d; 143:reg_data<=24'h518f56; 144:reg_data<=24'h519046; 145:reg_data<=24'h5191f8; 146:reg_data<=24'h519204; 147:reg_data<=24'h519370; 148:reg_data<=24'h5194f0; 149:reg_data<=24'h5195f0; 150:reg_data<=24'h519603; 151:reg_data<=24'h519701; 152:reg_data<=24'h519804; 153:reg_data<=24'h519912; 154:reg_data<=24'h519a04; 155:reg_data<=24'h519b00; 156:reg_data<=24'h519c06; 157:reg_data<=24'h519d82; 158:reg_data<=24'h519e38; 159:reg_data<=24'h548001; 160:reg_data<=24'h548108; 161:reg_data<=24'h548214; 162:reg_data<=24'h548328; 163:reg_data<=24'h548451; 164:reg_data<=24'h548565; 165:reg_data<=24'h548671; 166:reg_data<=24'h54877d; 167:reg_data<=24'h548887; 168:reg_data<=24'h548991;

169:reg_data<=24'h548a9a; 170:reg_data<=24'h548baa; 171:reg_data<=24'h548cb8; 172:reg_data<=24'h548dcd; 173:reg_data<=24'h548edd; 174:reg_data<=24'h548fea; 175:reg_data<=24'h54901d; 176:reg_data<=24'h53811e; 177:reg_data<=24'h53825b; 178:reg_data<=24'h538308; 179:reg_data<=24'h53840a; 180:reg_data<=24'h53857e; 181:reg_data<=24'h538688; 182:reg_data<=24'h53877c; 183:reg_data<=24'h53886c; 184:reg_data<=24'h538910; 185:reg_data<=24'h538a01; 186:reg_data<=24'h538b98; 187:reg_data<=24'h558006; 188:reg_data<=24'h558340; 189:reg_data<=24'h558410; 190:reg_data<=24'h558910; 191:reg_data<=24'h558a00; 192:reg_data<=24'h558bf8; 193:reg_data<=24'h501d40; 194:reg_data<=24'h530008; 195:reg_data<=24'h530130; 196:reg_data<=24'h530210; 197:reg_data<=24'h530300;

198:reg_data<=24'h530408;

199:reg_data<=24'h530530;

200:reg_data<=24'h530608;

201:reg_data<=24'h530716;

202:reg_data<=24'h530908;

203:reg_data<=24'h530a30;

204:reg_data<=24'h530b04;

205:reg_data<=24'h530c06;

206:reg_data<=24'h502500;

207:reg_data<=24'h300802;

//680x480 30 帧/秒, night mode 5fps, input clock =24Mhz, PCLK =56Mhz

208:reg_data<=24'h303511;

209:reg_data<=24'h303646;

210:reg_data<=24'h3c0708;

211:reg_data<=24'h382047;

212:reg_data<=24'h382101;

213:reg_data<=24'h381431;

214:reg_data<=24'h381531;

215:reg_data<=24'h380000;

216:reg_data<=24'h380100;

217:reg_data<=24'h380200;

218:reg_data<=24'h380304;

219:reg_data<=24'h38040a;

220:reg_data<=24'h38053f;

221:reg_data<=24'h380607;

222:reg_data<=24'h38079b;

223:reg_data<=24'h380802;

224:reg_data<=24'h380980;

225:reg_data<=24'h380a01;

226:reg_data<=24'h380be0;

227:reg_data<=24'h380c07;

228:reg_data<=24'h380d68;

229:reg_data<=24'h380e03;

230:reg_data<=24'h380fd8;

231:reg_data<=24'h381306;

232:reg_data<=24'h361800;

233:reg_data<=24'h361229;

234:reg_data<=24'h370952;

235:reg_data<=24'h370c03;

236:reg_data<=24'h3a0217;

237:reg_data<=24'h3a0310;

238:reg_data<=24'h3a1417;

239:reg_data<=24'h3a1510;

240:reg_data<=24'h400402;

241:reg_data<=24'h30021c;

242:reg_data<=24'h3006c3;

243:reg_data<=24'h471303;

244:reg_data<=24'h440704;

245:reg_data<=24'h460b35;

246:reg_data<=24'h460c22;

247:reg_data<=24'h483722;

248:reg_data<=24'h382402;

249:reg_data<=24'h500183;

250:reg_data<=24'h350300;

251:reg_data<=24'h301602;

252:reg_data<=24'h3b070a;

253:reg_data<=24'h3b0083;

254:reg_data<=24'h3b0000;

default:reg_data<=24'h000000;</pre>

endcase

end

(3) The control codes for the LED control and camera functions are as follows:

```
always @(posedge clk_50 , negedge initial_en)
```

if (!initial_en) begin

on_counter<=0;

off_counter<=0;

key_on<=1'b0;

key_off<=1'b0;

end

else begin

```
if (key1==1'b1)
```

on_counter<=0;

else if ((key1==1'b0)& (on_counter<=500000))

on_counter<=on_counter+1'b1;</pre>

if (on_counter==500000)

key_on<=1'b1;

else

key_on<=1'b0;

if (key1==1'b0)

off_counter<=0;

else if ((key1==1'b1)& (off_counter<=500000))

```
off_counter<=off_counter+1'b1;</pre>
```

```
if (off_counter==500000)
                  key_off<=1'b1;</pre>
           else
                  key_off<=1'b0;
      end
      reg [1:0] st_Strobe =0 ;
always @(posedge clk_50 , negedge initial_en)
   if (!initial_en)
         begin
              sign_Strobe <= 2'b00 ;</pre>
              st_Strobe <= 2'b00;
         end
    else begin case ( st_Strobe )
         0: st_Strobe
                        <= 2'b01 ;
              1:begin if (key_on)
                             begin
                                  if (sign_Strobe == 2'b00)
                                       st_Strobe
                                                   <= 2'b10 ;
                                  else if (sign_Strobe == 2'b11)
                                       st_Strobe <= 2'b11;
                             end
                        else begin
                                               <= st_Strobe ;
                                  st_Strobe
                                  sign_Strobe <=sign_Strobe ;</pre>
                               end
                 end
              2: begin
                        sign_Strobe <= sign_Strobe+1 ;</pre>
```

```
if (sign_Strobe == 2'b10)
    st_Strobe <= 2'b01;
    end
3: begin
    sign_Strobe <=sign_Strobe-1 ;
    if (sign_Strobe == 2'b01)
        st_Strobe <= 2'b01;
    end
    endcase
end</pre>
```

(4) Some key codes to implement the camera function:

module	pic(
input	wire	key3	,				
output	reg	hdmi_valid	,				
output	reg [15:0]	fifo_hdmi_dout	,				
input	wire	hdmi_rd_en ,					
input	wire	hdmi_end	,				
input	wire	hdmi_req ,					
output	wire [10:0	0] hdmi_fifo_rd_data_count ,	,				
output		sram1_cs_n		,			
output		sram1_we_n		,			
output		sram1_oe_n		,			
output		sram1_ub_n		,			
output		sram1_lb_n		,			
output		sram0_cs_n		,			
output		sram0_we_n		,			
output		sram0_oe_n		,			

263 / 304

output		sra	m0_ub_n				,			
output		sra	m0_lb_n				,			
output	[17:0] sram_	_addr			,				
inout	[3	31:0] sram_	_data			,				
input	wire	clk_5	50m				,			
input	wire	rst_n_50	Dm			,				
input	wire	hdmi_re	eg_done			,				
input	wire	reg_	conf_don	e			,			
input	wire	pic	_clk			,				
input	wire	vga_clk			,					
input	wire	can	nera_hre	F,						
input	wire	can	nera_vsyi	٦C,						
input	wire [7	:0]camera_	_data ,							
output	led									
);										
reg	car	mera_on	=	0	;					
reg	lo	ck_r	=	0	;					
reg	wr_en		= 0	;						
reg [7:0]	din	=	0;							
reg	rec	_sign	= 0	;						
reg	sig	n_we	=	0	;					
reg	w	rite_ack	=	0		;				

```
reg [1:0] camera_vsync_rr =2'b00;
```

reg [11:0]camera_h_count;

reg [10:0]camera_v_count;

assign led=!{camera_h_count,camera_v_count};

always @ (posedge pic_clk)

```
camera_vsync_rr <= {camera_vsync_rr[0],camera_vsync };</pre>
```

always @ (posedge pic_clk)

if (hdmi_reg_done&(camera_vsync_rr==2'b10)&rst_n_50m&rec_sign)

sign_we <=1 ;

else if (camera_vsync_rr==2'b01) sign_we <=0;

else sign_we <= sign_we ;

always @(posedge pic_clk)

begin

if (!reg_conf_done)

camera_h_count<=1;</pre>

else if((camera_href==1'b1) & (camera_vsync==1'b0))

camera_h_count<=camera_h_count+1'b1;</pre>

else

camera_h_count<=1;</pre>

end

always @(posedge pic_clk)

```
begin
     if (!reg_conf_done)
        camera_v_count<=0;</pre>
     else if (camera_vsync==1'b0)
              begin
             if(camera_h_count==1280)
                 camera_v_count<=camera_v_count+1'b1;</pre>
              else
                  camera_v_count<=camera_v_count;</pre>
              end
          else camera_v_count<=0;</pre>
end
always @ (posedge pic_clk)
  if (reg_conf_done==0)
         begin
             wr_en <=0;
             din <=0;
         end
  else begin
       if(camera_href&sign_we)
              begin
                  wr_en <=1 ;
                  din
                        <=camera_data;
              end
```

```
else begin
               wr_en <=0;
               din <=0;
             end
      end
 wire valid ;
 wire [31: 0] dout ;
      rd_en =0 ;
 reg
wire [9:0] rd_data_count;
wire [11:0] wr_data_count;
.data ( din ),
    .rdclk ( clk_50m ),
    .rdreq ( rd_en ),
    .wrclk ( pic_clk ),
    .wrreq ( wr_en ),
    .q ( dout ),
    .rdempty ( ),
    .rdusedw ( rd_data_count ),
    .wrfull (),
    .wrusedw ( wr_data_count )
    );
reg [31:0] din_sram_fifo =
                          32'd0
                                         ;
reg
           sram_fifo_wen
                           =
                                0
                                             ;
wire[15:0] fifo_hdmi_dout_r
                                            ;
wire
            hdmi_valid_r
                                             ;
```

```
wire [9:0] hdmi_fifo_wr_data_count
                                               ;
   wire full ;
    wire empty ;
always @ (posedge vga_clk)
    begin
        fifo_hdmi_dout <= fifo_hdmi_dout_r ;</pre>
                         <= hdmi_rd_en ;
        hdmi_valid
    // hdmi_valid <= hdmi_valid_r ;</pre>
    end
fifo_32_to_16 fifo_32_to_16_inst (
    .data ( din_sram_fifo ),
    .rdclk ( vga_clk ),
    .rdreq ( hdmi_rd_en ),
    .wrclk ( clk_50m),
    .wrreq ( sram_fifo_wen ),
    .q ( fifo_hdmi_dout_r ),
    .rdempty (),
    .rdusedw ( ),
    .wrfull ( ),
    .wrusedw()
    );
     reg [25:0] on_counter =26'd0 ;
always @(posedge clk_50m , negedge reg_conf_done)
   if (!reg_conf_done) begin
          on_counter<=0;
```

```
camera_on<=1'b0;
     end
   else begin
       if (key3==1'b1)
          on_counter<=0;
       else if ((key3==1'b0)& (on_counter<=500000))
         on_counter<=on_counter+1'b1;</pre>
      if (on_counter==500000)
              camera_on<=1'b1;</pre>
        else if (write_ack )
              camera_on<=1'b0;
               else camera_on<=camera_on;</pre>
    end
  wire [31:0] data_rd
                                     ;
   wire
              data_valid
                                          ;
   reg [4:0] sram_wr_st = 0
                                          ;
               w_cnt = 0
                                        ;
   reg
   reg [17:0] sram_addr_wr_rd = 18'd0 ;
   reg [31:0] data_we = 32'd0 ;
   reg [31:0] rd_data = 32'd0 ;
           wr_en_req = 0
                                     ;
   reg
                      = 0 ;
        rd_en_req
   reg
(* keep *) reg [8:0] hdmi_req_cnt = 0
                                               ;
always @ (posedge clk_50m, negedge reg_conf_done, negedge rst_n_50m)
```

```
begin
```

```
if ( ~rst_n_50m|~reg_conf_done)
   begin
            <= 0 ;
      rec_sign
      sram_addr_wr_rd <= 18'd0 ;</pre>
      sram_wr_st <= 0
                        ;
      data_we <= 32'd0
                           ;
      rd_data <= 32'd0 ;
      wr_en_req
                  <= 0
                           ;
      rd_en_req <= 0 ;
      hdmi_req_cnt <= 0 ;
   end
else begin case ( sram_wr_st)
         0 :
               begin
                   rec_sign <= 0 ;
                  sram_addr_wr_rd <= 18'd0 ;</pre>
                   data_we
                               <= 32'd0 ;
                   rd_data
                            <= 32'd0 ;
                               <= 0 ;
                   wr_en_req
                   rd_en_req
                            <= 0
                                  ;
                   sram_wr_st <= 1 ;</pre>
```

write_ack	<= 0	;	
end			
1 : begin if (camera_	_on)		
begin			
srai	m_wr_st <=	2	;
rec_	_sign <=	1	;
wri	:e_ack <=	1	;
end			
else sram_	_wr_st <=	7	;
end			
2 : begin			
write_ack	<= 0	;	
if (sign_we)			
	_		
beg	in 		
	data_we	<= 0	;
	sram_addr_wr_rd	1 <= 0	;
	wr_en_req	<= 0	;
	rec_sign	<= 0	;
	sram_wr_st	<= 3	;
end			
else begin			
	rec_sign	<= 1	;
	sram_wr_st	<= 2	;

end end 3 : begin if (sign_we) begin if (rd_data_count) begin rd_en <= 1 ; sram_wr_st <= 4 ; end else begin rd_en <= 0 ; sram_wr_st <= 3; end end else begin rd_en <= 0 ; sram_wr_st <= 0 ;</pre> end end 4 :begin rd_en <= 0 ; data_we <= {dout[7:0],dout[15:8],dout[23:16],dout[31:24]};

sram_addr_wr_rd <= sram_addr_wr_rd ;</pre> wr_en_req <= rd_en ; sram_wr_st <= 5 ; end 5: begin data_we <= dout ; sram_addr_wr_rd <= sram_addr_wr_rd ;</pre> wr_en_req <= rd_en; sram_wr_st <= 6 ; end 6 : begin <= dout ; data_we sram_addr_wr_rd <= sram_addr_wr_rd +1;</pre> wr_en_req <= rd_en; <= 3 ; sram_wr_st end 7: begin din_sram_fifo <= {data_rd[15:0],data_rd[31:16] }; sram_fifo_wen <= data_valid ;</pre> if (hdmi_end) <= 0 ; sram_wr_st else begin if (hdmi_req) begin

273 / 304

rd_en_req <=1 ; sram_addr_wr_rd<=sram_addr_wr_rd;</pre> sram_wr_st <= 8 ;</pre> hdmi_req_cnt <= 0; end else begin hdmi_req_cnt <= 0; sram_wr_st <= 7 ;</pre> end end end 8: begin sram_addr_wr_rd<=sram_addr_wr_rd+1;</pre> sram_wr_st <= 9 ;</pre> end 9 :begin sram_addr_wr_rd <= sram_addr_wr_rd + 1;</pre> sram_wr_st <= 10 ; hdmi_req_cnt <= hdmi_req_cnt+1; end 10 : begin hdmi_req_cnt <= hdmi_req_cnt+1;</pre>

din_sram_fifo <= {data_rd[15:0],data_rd[31:16] }; sram_fifo_wen <= data_valid ;</pre> sram_addr_wr_rd<= sram_addr_wr_rd+1;</pre> if (hdmi_req_cnt==318) begin rd_en_req <= 0; 7; sram_wr_st <= end end default : sram_wr_st <= 0 ;</pre> endcase end end sram_ctr sram_ctr_inst0 ((clk_50m) .clk_50 , .rst_n (rst_n_50m) , .wr_en (wr_en_req) , .rd_en (rd_en_req) .sram_addr_wr_rd (sram_addr_wr_rd) , .data_we (data_we) , .data_rd (data_rd) , (data_valid .data_valid) , .sram_addr (sram_addr) , .sram_data (sram_data) ,

	.sram1_ce	(sram1_cs_n)	,
	.sram1_oe	(sram1_oe_n)	,
	.sram1_we	(sram1_we_n)	,
	.sram1_lb	(sram1_lb_n)	,
	.sram1_ub	(sram1_ub_n)	,
	.sram0_ce	(sram0_cs_n)	,
	.sram0_oe	(sram0_oe_n)	,
	.sram0_we	(sram0_we_n)	,
	.sram0_lb	(sram0_lb_n)	,
	.sram0_ub	(sram0_ub_n)	
);			
endmodu	ıle		

(4) For the HDMI part, refer to the relevant HDMI content in previous experiments.

17.4 Experiment Verification

Signal Name	Port Description	Network Name	FPGA Pin
Clk_50m	System 50M clock	C10_50MCLK	G21
Reset_n	System reset signal	KEY1	Y4
Clk_24	PLL 5640 clock	IO30	Y13
Camera_data[0]	5640 image data bus	IO31	AA13
Camera_data[1]	5640 image data bus	1027	V12
Camera_data[2]	5640 image data bus	103	AA15
Camera_data[3]	5640 image data bus	102	V16
Camera_data[4]	5640 image data bus	107	U16
Camera_data[5]	5640 image data bus	101	R16
Camera_data[6]	5640 image data bus	105	U17

1. Pin assignment table

Camera_data[7]	5640 image data bus	104	AB20
Camera_pclk	5640 image clock	101	T16
Camera_href	5640 input horizontal signal	IO28	R14
Camera_vsync	5640 input vertical signal	1024	AA14
Camera_pwup	5640 power-up control	100	AA20
Key1	Camera on	KEY3	L8
Кеу2	LED	KEY6	P1
vga_hs	Horizontal synchronization	HDMI_HSYNC	C24
vga_vs	Vertical synchronization	HDMI_VSYNC	A25
en	Data valid	HDMI_DE	A24
vga_clk	Display clock	HDMI_CLK	B19
key1	Display switch	KEY2	L4
scl	adv7511 configured clock	I2C_SCL	R20
sda	adv7511 configured data line	I2C_SDA	R21
HDMI_D[23]	Red output	HDMI_D23	G7
HDMI_D[22]	Red output	HDMI_D22	F9
HDMI_D[21]	Red output	HDMI_D21	F7
HDMI_D[20]	Red output	HDMI_D20	C3
HDMI_D[19]	Red output	HDMI_D19	B3
HDMI_D[18]	Red output	HDMI_D18	C4
HDMI_D[17]	Red output	HDMI_D17	A3
HDMI_D[16]	Red output	HDMI_D16	E7
HDMI_D[15]	Green output	HDMI_D15	B4
HDMI_D[14]	Green output	HDMI_D14	D6
HDMI_D[13]	Green output	HDMI_D13	A4
HDMI_D[12]	Green output	HDMI_D12	C6
HDMI_D[11]	Green output	HDMI_D11	В5

HDMI_D[10]	Green output	HDMI_D10	D7
HDMI_D[9]	Green output	HDMI_D9	C7
HDMI_D[8]	Green output	HDMI_D8	A5
HDMI_D[7]	Blue output	HDMI_D7	B6
HDMI_D[6]	Blue output	HDMI_D6	F8
HDMI_D[5]	Blue output	HDMI_D5	A6
HDMI_D[4]	Blue output	HDMI_D4	C8
HDMI_D[3]	Blue output	HDMI_D3	В7
HDMI_D[2]	Blue output	HDMI_D2	E9
HDMI_D[1]	Blue output	HDMI_D1	B8
HDMI_D [0]	Blue output	HDMI_D0	A7
Uart_rx	Serial receive	TTL_TX	L17
Uart_tx	Serial transmit	TTL_RX	L18
Sram_data[0]	SRAM data bus	D0	F22
Sram_data[1]	SRAM data bus	D1	E21
Sram_data[2]	SRAM data bus	D2	D21
Sram_data[3]	SRAM data bus	D3	E22
Sram_data[4]	SRAM data bus	D4	D22
Sram_data[5]	SRAM data bus	D5	C21
Sram_data[6]	SRAM data bus	D6	B21
Sram_data[7]	SRAM data bus	D7	C22
Sram_data[8]	SRAM data bus	D8	M16
Sram_data[9]	SRAM data bus	D9	К19
Sram_data[10]	SRAM data bus	D10	M20
Sram_data[11]	SRAM data bus	D11	M19
Sram_data[12]	SRAM data bus	D12	L22
Sram_data[13]	SRAM data bus	D13	L21
Sram_data[14]	SRAM data bus	D14	J22

Sram_data[15]	SRAM data bus	D15	J18
Sram_data[16]	SRAM data bus	D16	M21
Sram_data[17]	SRAM data bus	D17	K18
Sram_data[18]	SRAM data bus	D18	N21
Sram_data[19]	SRAM data bus	D19	M22
Sram_data[20]	SRAM data bus	D20	P22
Sram_data[21]	SRAM data bus	D21	P20
Sram_data[22]	SRAM data bus	D22	R20
Sram_data[23]	SRAM data bus	D23	P21
Sram_data[24]	SRAM data bus	D24	W19
Sram_data[25]	SRAM data bus	D25	W20
Sram_data[26]	SRAM data bus	D26	R17
Sram_data[27]	SRAM data bus	D27	T17
Sram_data[28]	SRAM data bus	D28	U19
Sram_data[29]	SRAM data bus	D29	AA21
Sram_data[30]	SRAM data bus	D30	AA22
Sram_data[31]	SRAM data bus	D31	R18
Sram_addr[0]	SRAM address bus	AO	J21
Sram_addr[1]	SRAM address bus	A 1	H22
Sram_addr[2]	SRAM address bus	A 2	H19
Sram_addr[3]	SRAM address bus	A 3	G18
Sram_addr[4]	SRAM address bus	A 4	H17
Sram_addr[5]	SRAM address bus	A 5	H21
Sram_addr[6]	SRAM address bus	A 6	H20
Sram_addr[7]	SRAM address bus	A 7	F19
Sram_addr[8]	SRAM address bus	A 8	H18
Sram_addr[9]	SRAM address bus	A 9	F20
Sram_addr[10]	SRAM address bus	A 10	W21

Sram_addr[11]	SRAM address bus	A 11	W22
Sram_addr[12]	SRAM address bus	A 12	V21
Sram_addr[13]	SRAM address bus	A 13	U20
Sram_addr[14]	SRAM address bus	A 14	V22
Sram_addr[15]	SRAM address bus	A 15	R21
Sram_addr[16]	SRAM address bus	A 16	U21
Sram_addr[17]	SRAM address bus	A 17	R22
Sram_addr[18]	SRAM address bus	A18(invalid pin)	U22
Sram0_cs_n	Oth SRAM enable	CE_N_SRAM0	F21
Sram0_we_n	Oth SRAM write enable	OE_N_SRAM0	B22
Sram0_oe_n	Oth SRAM read enable	WE_N_SRAM0	F17
Sram0_ub_n	0 th SRAM high byte enable	UE_N_SRAMO	K22
Sram0_lb_n	0 th SRAM low byte enable	LE_N_SRAM0	K21
Sram0_cs_n	1st SRAM enable	CE_N_SRAM1	N22
Sram0_we_n	1st SRAM write enable	OE_N_SRAM1	R19
Sram0_oe_n	1st SRAM read enable	WE_N_SRAM1	Y21
Sram0_ub_n	1st SRAM high byte enable	UE_N_SRAM1	Y22
Sram0_lb_n	1st SRAM low byte enable	LE_N_SRAM1	T18
Led0	OV5640 register	LED0	J5
	configuration indicator		
Led1	ADV7511 register	LED1	J6
	configuration indicator		
i2c_sclk	5640 configured clock	1026	AB13
i2c_sdat	5640 configured data cable	IO29	AB14

2. Board verification

After the board is programmed, *led0* and *led1* light up, indicating that the OV5640 and ADV7511 configurations are complete.

Push button RIGHT has the function of turning on and off the LED fill light.

Press the RETURN button once, the camera will take a picture and display it on the display

screen of the HDMI interface. Actual board test results are shown in Figure 17.3.

Figure 17.3 Monitor display pictures taken by 5640

Experiment 18 High-speed ADC9226 Acquisition Experiment

18.1 Experiment Objective

Learn about parallel ADC collectors and master the use of ADC9226.

18.2 Experiment Implement

Insert the ADC9226 module face up into the FPGA development board to the GPIO2 and GPIO1 ports which are next to the red-green audio module. Write programs to use this module to test

18.3 Experiment

18.3.1 ADC9226 Module Introduction

ADC9226 module adopts AD9226 chip design of ADI Company. This chip is a monolithic, 12bit, 65 MSPS analog-to-digital converter (ADC). It uses a single power supply and has an on-chip high-performance sample-and-hold amplifier and voltage reference. It uses a multistage differential pipelined architecture with a data rate of 65 MSPS and guarantees no missing codes over the full operating temperature range.

See Figure 18.1 for ADC9226 timing diagram.

From this timing diagram, we know that there is no need to configure the AD9226 chip, as long as the appropriate CLOCK is provided, the chip can perform data acquisition.

18.3.2 Program Design

1. AD acquisition sub-module

As can be seen from Figure 18.1, the high bit of AD9226 is bit[0] and the low bit is bit [11], so the data bit order needs to be reversed in the program.

module ad_9226(

input ad_clk,

input [11:0] ad1_in,

	output reg [11:0] ad_ch				
);					
	S/ 1 1 113				
always @	(posedge ad_cik)				
beg	in				
	ad_ch[11]	<= ad1_in[0]	;		
	ad_ch[10]	<= ad1_in[1]	;		
	ad_ch[9]	<= ad1_in[2]	;		
	ad_ch[8]	<= ad1_in[3]	;		
	ad_ch[7]	<= ad1_in[4]	;		
	ad_ch[6]	<= ad1_in[5]	;		
	ad_ch[5]	<= ad1_in[6]	;		
	ad_ch[4]	<= ad1_in[7]	;		
	ad_ch[3]	<= ad1_in[8]	;		
	ad_ch[2]	<= ad1_in[9]	;		
	ad_ch[1]	<= ad1_in[10]	;		
	ad_ch[0]	<= ad1_in[11]	;		
end					
endmod	ule				

2. Data conversion program

The AD9226 module design uses an internal reference source. VREF is the output port of the reference source, which can be used for 1V and 2V reference voltages. It can be selected through SENCE. When SENCE is grounded, a 2V reference is provided, and when SENCE is connected to VREF, a 1V reference is provided. The module uses a 2V reference power supply. VINA input range is $1.0 \sim 3.0V$.

The 22 (12) pin of AD9226 has the function of collecting data selection. There are two input and output data formats of AD9226. For the specific format, refer to the 9226 datasheet. The 22 (12) pin of the AD9226 module in this experiment is connected to high level, so it uses Binary Output Mode. The BCD conversion submodule has been introduced in Experiment 8 and is not repeated here.

```
module volt_cal(
    input wire
                    ad_clk,
    input wire [11:0] ad_ch1,
    output [19:0] ch1_dec,
    output reg ch1_sig
    );
reg [31:0] ch1_data_reg;
reg [11:0] ch1_reg;
reg [31:0] ch1_vol;
always @(posedge ad_clk)
begin
    if(ad_ch1[11]==1'b1) begin
         ch1_reg<={1'b0,ad_ch1[10:0]};
         ch1_sig <= 0;
     end
     else begin
         ch1_reg<={12'h800-ad_ch1[10:0]};
         ch1_sig<=1;
     end
end
always @(posedge ad_clk)
begin
    ch1_data_reg<=ch1_reg * 2000;
    ch1_vol<=ch1_data_reg >>11;
end
bcd bcd1_ist(
                                 (ch1_vol[15:0]),
                 .hex
```

	.dec		(ch1_dec),		
	.clk		(ad_clk)		
);			
endmodule					

9226 module AD acquisition range selection
 The attenuation range of the AD acquisition module is divided into gears. Press the UP key on the development board to switch the range.

Gear comparison table (input voltage percentage)	Corresponding indicator
4%	led0 lit
8%	led0, led1 lit
20%	led0, led1, led2 lit
40%	led0, led1, led2, led2 lit

Table 18.1 Gear shift indication table

module range (
	input	wire		clk	,				
	input	wire		rst_n	,				
	input	wire		key	,				
	output	wire	[3:0]	led	,				
	output	wire	[1:0]	scope					
);								
wire flag_switch ;									
key_process key_process_inst(
	.clk	(clk	:)	,					
	.rst_n		(rst_n)		,				
	.key_sw	itch	(key)	,					

```
.flag_switch (flag_switch)
);
reg [1:0] scope_st =00 ;
reg [3:0] led_temp =4'he ;
always @ (posedge clk , negedge rst_n)
begin
if (~rst_n)
    begin
        scope_st <= 0 ;</pre>
        led_temp <= 4'he ;</pre>
    end
else begin
             case (scope_st)
                  0: begin
                           led_temp <= 4'he ;</pre>
                           if (flag_switch )
                           scope_st <= 1 ;
                  end
                  1: begin
                           led_temp <= 4'hc ;</pre>
                           if (flag_switch )
                           scope_st <= 2 ;</pre>
                  end
                  2: begin
                           led_temp <= 4'h8 ;</pre>
                           if (flag_switch )
                           scope_st <= 3 ;</pre>
                  end
```

4. Main program design

The main program is divided into three sub-programs, which are AD_9226 acquisition module, data conversion calculation module volt_cal, and voltage value segment display module. The segment display part has been introduced in the previous experiment and will not be introduced here.

module high_speed_ad_test(
	input	wire	sys_clk,			
	input	wire	otr ,			
	input	wire	key_switch ,			
	input	wire	sys_rst_n ,			
	input	wire [11:0]	ad1_in,			
	output	t wire	ad1_clk,			
	output	t wire [5:0]	sel,			
	output wire [3:0]		led ,			
	output wire		cain_a,			
	output wire		cain_b,			
	output wire [7:0]		sm_db			
);						

```
assign ad1_clk = sys_clk ;
assign sm_db={point1, ~sm_db_r };
wire [19:0] ch1_dec;
wire [11:0] ad_ch1;
wire ch1_sig ;
wire point1;
wire [6:0] sm_db_r ;
ad_9226 u1 (
        .ad_clk
                      (sys_clk),
        .ad1_in
                     (ad1_in ),
        .ad_ch
                      (ad_ch1)
);
volt_cal u2(
        .ad_clk
                    (sys_clk),
        .ad_ch1
                      (ad_ch1),
        .ch1_dec
                     (ch1_dec),
        .ch1_sig
                      (ch1_sig)
    );
led_seg7 u3(
                (sys_clk),
        .clk
                     (sys_rst_n ),
        .rst_n
        .otr
                     (otr) ,
        .ch1_sig (ch1_sig),
        .ch1_dec (ch1_dec),
```
	.sel	(sel),
	.point1	(point1),
	.sm_db	(sm_db_r)
);
range	u4(
	.clk	(sys_clk),
	.rst_n	(sys_rst_n),
	.key	(key_switch) ,
	.led	(led),
	.scope	({cain_b,cain_a})
);		
endmod	lule	

18.4 Experiment Verification

1. Pin assignment			
Signal Name	Port Description	Network Name	FPGA Pin
sys_clk	System clock	C10_50MCLK	G21
sys_rst_n	System reset	KEY1	Y4
lg_en	ADG612 input	1025	AB20
hg_en	ADG612 input	IO24	AA20
ad1_clk	Ad acquisition clock	IO28	R16
otr	Input voltage overrange flag	101	AA13
sm_db[0]	Segment selection	SEG_PA	B15
sm_db[1]	Segment selection	SEG_PB	E14
sm_db[2]	Segment selection	SEG_PC	D15
sm_db[3]	Segment selection	SEG_PD	C15
sm_db[4]	Segment selection	SEG_PE	F13
sm_db[5]	Segment selection	SEG_PF	E11

sm_db[6] Segment selection		SEG_PG	B16
sm_db[7]	Segment selection	SEG_DP	A16
sel[0]	Bit selection	SEG_3V3_D0	E12
sel[1]	Bit selection	SEG_3V3_D1	F11
sel[2]	Bit selection	SEG_3V3_D2	E13
sel[3]	Bit selection	SEG_3V3_D3	E15
sel[4]	Bit selection	SEG_3V3_D4	D19
sel[5]	Bit selection	SEG_3V3_D5	F14
ad1_in[0]	AD9226 acquisition data bus	100	V12
ad1_in[1]	AD9226 acquisition data bus	105	Y13
ad1_in[2]	AD9226 acquisition data bus	104	AB13
ad1_in[3]	AD9226 acquisition data bus	103	AB14
ad1_in[4]	AD9226 acquisition data bus	IO6	W13
ad1_in[5]	AD9226 acquisition data bus	102	R14
ad1_in[6]	AD9226 acquisition data bus	107	AA14
ad1_in[7]	AD9226 acquisition data bus	IO29	U16
ad1_in[8]	AD9226 acquisition data bus	1030	AA15
ad1_in[9]	AD9226 acquisition data bus	1031	T16
ad1_in[10]	AD9226 acquisition data bus	1027	V16
ad1_in[11]	AD9226 acquisition data bus	IO26	U17
led0	Input signal attenuation indicator	LEDO	J5
led1	Input signal attenuation indicator	LED1	J6
led2	Input signal attenuation indicator	LED2	Н5
led3	Input signal attenuation indicator	LED3	H6
key_switch	Attenuation switch	PB2	V5

2. Board verification

Use this experimental development board to connect the DA9667 module to generate a 1M sine wave as a signal source. Use the AD9226 module to connect to GPIO1 and GPIO2 of the PRA040 development board and apply a logic analyzer to capture the signal as shown in Figure 18.2. The following waveform can be observed. From the left to the right of the segment display, the first segment display is selected and lit to indicate that the input measurement voltage exceeds the AD9226 measurement range (the absolute value of VINA-VINB is less than or equal to the reference voltage, and the reference voltage of this module is 2V). The second segment display shows the sign of the input voltage (VINA-VINB). The last four digits are the input voltage value. When the input signal value is a slowly changing signal, the segment display can display the signal voltage amplitude.

Figure 18.2 Measured signal waveform of AD9226 captured by logic analyzer

Experiment 19 DAC9767 DDS Signal Source Experiment

19.1 Experiment Objective

- 1. Learn about DDS (Direct Digital Synthesizer) related theoretical knowledge.
- 2. Read the AD9767 datasheet and use the AD9767 to design a signal source that can generate sine, square, triangle, and sawtooth waves.

19.2 Experiment Implement

- 1. Learn about DDS theoretical knowledge.
- 2. On the basis of understanding the principle of DDS, combined with the theoretical knowledge, use AD9767 module and development board to build a signal source whose waveform, amplitude and frequency can be adjusted. (There are no specific requirements for the adjustment of waveform, amplitude, and frequency here, as long as the conversion can be adjusted by pressing a button).

19.3 Experiment

19.3.1 DDS Introduction

The DDS technology is based on the Nyquist sampling theorem. Starting from the phase of the continuous signal, the sine signal is sampled, encoded, and quantized to form a sine function table, which is stored in the ROM. During synthesis, phase increment is changed by changing the frequency word of the phase accumulator. Phase increment is what is called step size. The difference in phase increment results in different sampling points in a cycle. When the clock frequency, or the sampling frequency does not change, the frequency is changed by changing the phase. The block diagram is shown in Figure 19.1.

Figure 19.1 DDS block diagram

19.3.2 AD9767 Configuration Introduction

The AD9767 module uses ADI's AD9767 DAC chip, which is a 14-bit, 125MSPS conversion rate high-performance DAC device. It supports the IQ output mode and can be used in the communications.

AD9767 interface timing requirements. As shown in Figure 19.2 below, when the rising edge of the clock comes, the data must remain stable for *ts* time. After the rising edge of the clock, the data must remain stable for *th* to be correct.

Figure 19.2 9767 interface timing diagram

19.3.3 Waveform Memory File Configuration

The waveform storage area file is *dds_4096x10b_wave_init.coe*. For the specific making process, refer to the use of the *.*coe* file in the experiment 9. The file containing the waveform information is stored in the ROM. After the project file is programmed into the FPGA, the FPGA directly reads the waveform information from the ROM and sends it to the AD9767 interface, and then outputs the corresponding waveform on the AD9767 module. The waveform storage is as shown in Figure 19.3.

À Re-customize IP		×
Block Memory Generator (8.4)		4
Documentation P Location C Switch to Defaults		
IP Symbol Power Estimation	Component Name rom_dds_4096_10	
Show disabled ports	Basic Port A Options Other Options Summary Pipeline Stages within Mux 0 Mux Size: 1x1 Memory Initialization Image: Coord File Coord File File Coord File 7, test srcs/sources_thewidds_4096x10b, wave_init.coord Image: Browse Image: Coord File Image: Coord File Image: Coord File	
H BRAM_PORTA	Fill Remaining Memory Locations Remaining Memory Locations (Her) Structural Uni Sim Simulation Model Options Definites the type of variatings and outputs are generated when a read-write or write-write collision occurs. Collision Warnings All v	
	Behavioral Simulation Model Options Disable Collision Warnings Disable Out of Range Warnings	
	ок	Cancel

Figure 19.3 Wave file storage

19.3.4 Program Design

1. The main program includes waveform selection, mode selection, frequency adjustment, and amplitude adjustment. The specific code is as follows:

```
module dac_9767_test(
    input
             wire
                      sys_clk_50m,
    input
             wire
                      rst_n,
(*mark_debug="true"*) output
                                    mode,
    output wire
                      dac_clk,
    output wire
                          led
                                 ,
    input
                      mode_adjust,
            wire
                      a_adjust,
    input
            wire
    input
            wire
                         f_adjust,
    input
            wire
                         wave_adjust,
             reg [13:0] data_out
   output
    );
wire [9:0] douta ;
```

```
wire clk_50m ;
 BUFG BUFG_inst (
       .O(clk_50m),
       .l(sys_clk_50m)
   );
wire locked ;
wire clk_100m;
pll_50_100 pll_50_100_inst
   (
    .clk_out1(clk_100m),
    .clk_out2(dac_clk), //nclk_100m
    .reset(0),
    .locked(locked),
    .clk_in1(clk_50m));
reg rst_n_g = 0;
 always @ (posedge clk_100m)
      rst_n_g<=locked &rst_n;</pre>
wire A_ctrl ;
wire F_ctrl ;
wire wave_switch ;
wire mode_ctrl ;
reg [1:0] base_addr =0 ;
reg [3:0] base_A =0 ;
reg [1:0] a_st
                =0;
```

```
always @ (posedge clk_100m , negedge rst_n_g )
begin
   if (~rst_n_g)
      base_addr <=0;</pre>
   else if (wave_switch)
      base_addr <= base_addr +1;</pre>
   else base_addr <= base_addr ;</pre>
end
always @ (posedge clk_100m , negedge rst_n_g )
begin
   if (~rst_n_g)
      begin
        base_A <=1;</pre>
        a_st <=0;
      end
   else begin case (a_st)
             0: begin
                       base_A <=8;
                       a_st <=1;
                 end
             1: begin
                       if (A_ctrl)
                            begin
                            a_st<=2;
                            base_A <=11;
                            end
                       else begin
```

```
a_st<=1 ;
             base_A <=8;
         end
   end
2: begin
         if (A_ctrl)
             begin
             a_st<=3;
             base_A <=15;
             end
         else begin
             a_st<=2;
             base_A <=11;
         end
   end
3: begin
         if (A_ctrl)
             begin
             a_st<= 1;
             base_A <=8;
             end
         else begin
             a_st<=3;
             base_A <=15;
         end
   end
default :begin
```

```
base_A <=1;
                            a_st <=0;
                       end
              endcase
         end
 end
always @ (posedge clk_100m , negedge rst_n_g )
 begin
    if (~rst_n_g)
         data_out <=0 ;</pre>
    else data_out<= douta * base_A ;</pre>
 end
reg [9:0] addr_r =0;
reg [9:0] addr_temp_F =1 ;
reg [3:0] f_st =0 ;
always @ (posedge clk_100m , negedge rst_n_g )
 begin
    if (~rst_n_g)
       begin
         addr_temp_F <= 0;
         f_st
                 <=0;
       end
    else begin case (f_st)
          0: begin
                  addr_temp_F <= 0;
```

	f_st <= 1	;
	end	
1	: begin	
	addr_temp_F <= :	1;
	if (F_ctrl)	
	f_st <= 2	;;
	end	
2	: begin	
	addr_temp_F <= 2	2;
	if (F_ctrl)	
	f_st <= 3	;;
	end	
3	: begin	
	addr_temp_F <= 3	3;
	if (F_ctrl)	
	f_st <= 4	;
	end	
2	1: begin	
	addr_temp_F <= 4	4;
	if (F_ctrl)	
	f_st <= 5	;
	end	
5	5: begin	
	addr_temp_F <= !	5;
	if (F_ctrl)	
	f_st <= 6	;
	end	

```
6:
               begin
                addr_temp_F <= 6 ;
                if (F_ctrl)
                f_st
                      <= 7 ;
                end
          7:
               begin
                addr_temp_F <= 8;
                if (F_ctrl)
                f_st <= 1;
               end
        default : f_st <= 1;
         endcase
     end
 end
always @ (posedge clk_100m , negedge rst_n_g )
begin
    if (~rst_n_g)
      addr_r <=0;
    else
     addr_r <= addr_r+1+addr_temp_F ;</pre>
end
(*mark_debug="true"*)reg [11:0] addra=0;
always @ (posedge clk_100m , negedge rst_n_g )
begin
```

```
if (~rst_n_g)
        addra <=0;
    else addra<={base_addr, addr_r };</pre>
 end
reg mode_r=0;
 always @ (posedge clk_100m , negedge rst_n_g )
 begin
    if (~rst_n_g)
        mode_r <= 0;
    else if (mode_ctrl) mode_r <=~mode_r;</pre>
          else mode_r <= mode_r;</pre>
 end
assign mode=mode_r ;
assign led= ~mode_r ;
key_process (
    .clk
                (clk_100m ) ,
    .rst_n
                   (rst_n_g ) ,
                   (wave_adjust),
    .key_switch
    .key_adjust
                     (a_adjust ),
    .key_add
               (f_adjust ) ,
    .key_sub
               (mode_adjust)
                               ,
    .flag_switch (wave_switch),
    .flag_adjust (A_ctrl
                            )
                                ,
    .flag_add (F_ctrl
                            ),
    .flag_sub
                   (mode_ctrl )
);
rom_dds_4096_10 rom_dds_4096_10_inst (
  .clka(clk_100m), // input wire clka
```

```
.addra(addra), // input wire [11 : 0] addra
.douta(douta) // output wire [9 : 0] douta
);
endmodule
```

19.4 Experiment Verification

1. Pin assignment

Signal Name	Port Description	Network Name	FPGA Pin
sys_clk_50m	System clock	C10_50MCLK	G21
mode	9767 mode control	1024	AA14
wave_adjust	Waveform selection	key2	V5
a_adjust	Amplitude selection	key3	Y6
f_adjust	Frequency selection	key4	AB4
mode_adjust	Mode selection	key6	AA4
led	Mode indicator light	LED0	J5
dac_clk	9767 driving clock	IO28	W13
rst_n	System reset	key1	Y4
data_out[0]	AD9767 data bus	101	U16
data_out[1]	AD9767 data bus	100	AA15
data_out[2]	AD9767 data bus	105	T16
data_out[3]	AD9767 data bus	104	V16
data_out[4]	AD9767 data bus	103	U17
data_out[5]	AD9767 data bus	IO6	R16
data_out[6]	AD9767 data bus	102	AB20
data_Out[7]	AD9767 data bus	107	AA20
data_out[8]	AD9767 data bus	IO29	AA13

data_out[9]	AD9767 data bus	IO30	Y12
data_out[10]	AD9767 data bus	IO31	Y13
data_out[11]	AD9767 data bus	1027	AB13
data_out[12]	AD9767 data bus	IO26	AB14
data_out[13]	AD9767 data bus	1025	R14

2.Board verification

After the FPGA development board is programmed, press the right key (mode), and the mode indicator *led0* lights up.

Then waveform can be chosen according to UP key (waveform selection), RETURN key (amplitude selection), LEFT key (frequency selection). (This experiment is only to introduce the theoretical knowledge of DDS and verify its correctness. Therefore, only four types of waveforms are set, which are sine wave, square wave, triangle wave, and sawtooth wave. The frequency and amplitude are also randomly set.) Figure 19.4 below shows four waveforms of the oscilloscope measuring the output of the 9767 module.

Figure 19-4a Sine wave

Figure 19-4c Triangle wave

Figure 19-4b Square wave

Figure 19-4d Sawtooth wave

References:

- 1. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug _usb_blstr_ii_cable.pdf
- 2. https://www.nxp.com/docs/en/data-sheet/PCF8591.pdf
- 3. https://www.analog.com/media/en/technical-documentation/userguides/ADV7511_Hardware_Users_Guide.pdf
- 4. https://www.mouser.com/ds/2/268/atmel_doc0180-1065439.pdf
- https://www.verical.com/datasheet/realtek-semiconductor-phy-rtl8211e-vb-cg-2635459.pdf'
- 6. https://www.mouser.com/ds/2/76/WM8978_v4.5-1141768.pdf
- 7. https://www.mouser.com/datasheet/2/76/WM8978_v4.5-1141768.pdf