Experimental Manuals FPGA for Beginners Pocket Boards PRA006/PRA010

Understand What Ethernet is and How it Works, the Relationship Between Different Interface Types (MII, GMII, RGMII) , Ethernet Experiment – FPGA Beginner Study Board PRA006, PRA010 Experiment 14

Experiment 14 Ethernet Experiment 14.1 Experiment Objective Understand what Ethernet is and how it works Familiar with the relationship between different interface types (MII, GMII, RGMII) and their advantages and disadvantages (the development board uses RGMII) Combine the development board to complete the transmission and reception of data and verify it 14.2 Experiment Implement Perform a loopback test to check if the hardware is working properly. Performing data verification Perform data transmission verification 14.3 Experiment 14.3.1 Experiment Principle Ethernet is a baseband LAN technology. Ethernet communication is a communication method…

Read More
Experimental Manuals FPGA for Beginners FPGA Tutor PRA006/PRA010

Design a simple customized VGA image display, Master the principle of VGA implementation, VGA Experiment – FPGA Beginner Study Board PRA006, PRA010 Experiment 13

Experiment 13 VGA Experiment 13.1 Experiment Objective Master the principle of VGA implementation Design a simple customized VGA image display 13.2 Experiment Implement A color bar graphic is implemented on the screen. 13.2 Experiment 13.2.1 VGA Principle VGA (Video Graphics Array) is a computer display standard that IBM introduced in 1987 using analog signals. VGA is a low standard that is supported by most manufacturers. PCs must support the VGA standard before loading their own unique drivers. The VGA scanning mode on the display is divided into progressive scanning and…

Read More
Experimental Manuals FPGA for Beginners FPGA Tutor PRA006/PRA010

The knowledge of the IIC protocol, the Theory of AD Conversion, AD, DA Experiment – FPGA Beginner Study Board PRA006, PRA010 Experiment 12

Experiment 12 AD, DA Experiment 12.1 Experiment Objective Since in the real world, all naturally occurring signals are analog signals, and all that are read and processed in actual engineering are digital signals. There is a process of mutual conversion between natural and industrial signals (digital-to-analog conversion: DAC, analog-to-digital conversion: ADC). The purpose of this experiment is as follows: Learn about the theory of AD conversion Review the knowledge of the IIC protocol learned in the previous experiment and write the data into PCF8591 on the development board. Read the…

Read More
FPGA Board Based FPGA for Beginners FPGA Tutor Pocket Boards PRA006/PRA010

Reading and Writing EEPROM, the Basic Principles of Asynchronous IIC Bus, the IIC Communication Protocol, IIC transmitting Experiment – FPGA Beginner Study Board PRA006, PRA010 Experiment 11

Experiment 11 IIC transmitting Experiment 11.1 Experiment Objective Learning the basic principles of asynchronous IIC bus, and the IIC communication protocol Master the method of reading and writing EEPROM Joint debugging using logic analyzer 11.2 Experiment Implement Correctly write a number to any address in the EEPROM (this experiment writes to the register of 8’h03 address) through the FPGA (here changes the written 8-bit data value by (SW7~SW0)). After writing in successfully, read the data as well. The read data is displayed directly on the segment display. Program the FPGA…

Read More
scheme of series ports
Experimental Manuals FPGA for Beginners Pocket Boards PRA006/PRA010

Asynchronous Serial Port Communication, Handshake Mechanism and Data Frame Strcuture, Asynchronous Serial Port Design and Experiment – FPGA Beginner Study Board PRA006, PRA010 Experiment 10

Experiment 10 Asynchronous Serial Port Design and Experiment 10.1 Experiment Objective Because asynchronous serial ports are very common in industrial control, communication, and software debugging, they are also vital in FPGA development. Study the basic principles of asynchronous serial port communication, handshake mechanism and data frame strcuture Master asynchronous sampling techniques Review the frame structure of the data packet Learn to use FIFO Joint debugging with common debugging software of PC (SSCOM, Tera Term, etc.) 10.2 Experiment Implement Design and transmit full-duplex asynchronous communication interface Tx, Rx Baud rate of…

Read More
Experimental Manuals FPGA for Beginners FPGA Tutor Pocket Boards PRA006/PRA010

Configure and Use Dual-port RAM, Use Dual_port RAM to Read and Write Frame Data – FPGA Beginner Study Board PRA006, PRA010 Experiment 9

Experiment 9 Use Dual_port RAM to Read and Write Frame Data 9.1 Experiment Objective Learn to configure and use dual-port RAM Learn to use synchronous clock to control the synchronization of frame structure Learn to use asynchronous clock to control the synchronization of frame structure Experiment Implement Observing the synchronization structure of synchronous clock frames using SignalTap II Extended the use of dual-port RAM Design the use of three-stage state machine Design a 16-bit data frame Data is generated by an 8-bit counter: Data={~counta,counta} The ID of the data frame…

Read More
Experimental Manuals FPGA for Beginners FPGA Tutor Pocket Boards PRA006/PRA010

Study the Format of *.mif File and How to Edit *.mif File ,Study the Internal Memory Block of FPGA,Use of ROM – FPGA Beginner Study Board PRA006, PRA010 Experiment 8

Experiment 8 Use of ROM 8.1 Experiment Objective Study the internal memory block of FPGA Study the format of *.mif and how to edit *.mif file to configure the contents of ROM Learn to use RAM, read and write RAM 8.2 Experiment Implement Design 16 outputs ROM, address ranging 0-255 Interface 8-bit switch input as ROM’s address Segment display illustrates the contents of ROM and require conversion of hexadecimal to BCD output. 8.3 Experiment 8.3.1 Introduction to Program This experiment was carried out on the basis of Experiment 7, and…

Read More
Experimental Manuals FPGA Board Based FPGA for Beginners PRA006/PRA010

Binary Numbers or Hexadecimal Number to BCD Code Conversion and Application – FPGA Beginner Study Board PRA006, PRA010 Experiment 7

Experiment 7 Hexadecimal Number to BCD Code Conversion and Application Experiment Objective Learn to convert binary numbers to BCD code (bin_to_bcd) Learn to convert hexadecimal numbers to BCD code (hex_to_bcd) 7.2 Experiment Implement Combined with experiment 6, display the results of the operation to the segment display. 7.3 Experiment 7.2.1 Introduction to the Principle of Converting Hexadecimal Number to BCD Code Since the hexadecimal display is not intuitive, decimal display is more widely used in real life. Human eyes recognition is relatively slow, so the display from hexadecimal to decimal…

Read More
Experimental Manuals FPGA for Beginners FPGA Tutor PRA006/PRA010

Use ModelSim Simulation to Design Output, Use of Multipliers and ModelSim Simulation – FPGA Beginner Study Board PRA006, PRA010 Experiment 6

Experiment 6 Use of Multipliers and ModelSim Simulation 6.1 Experiment Objective Learn to use multiplier Use ModelSim simulation to design output 6.2 Experiment Implement 8×8 multiplier, the first input value is an 8-bit switch, and the second input value is the output of an 8-bit counter. Observe the output in ModelSim Oberseve the calculation results with a four-digit segment display 6.3 Experiment Since the simulation tools and the new IP core are used here, there is no introduction or design part of hardware. 6.3.1 Introduction of Program ModelSim is an…

Read More
Experimental Manuals FPGA Board Based FPGA for Beginners FPGA Tutor PRA006/PRA010

Button Debounce Principle and Adaptive Programming – Button Debounce Experiment – FPGA Beginner Study Board PRA006, PRA010 Experiment 5

Experiment 5 Button Debounce Experiment 5.1 Experiment Objective Review the design process of the shifting LED Learn button debounce principle and adaptive programming Study the connection and use of the FII-PRA006/010 button hardware circuit Comprehensive application button debounce and other conforming programming 5.2 Experiment Implement Control the movement of the lit LED by pressing the button Each time the button is pressed, the lit LED moves one bit. When the left shift button is pressed, the lit LED moves to the left, presses the right button, and the lit LED…

Read More